--- license: apache-2.0 tags: - generated_from_trainer datasets: - pub_med_summarization_dataset metrics: - rouge model-index: - name: distilbart-xsum-12-1-finetuned-pubmed results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: pub_med_summarization_dataset type: pub_med_summarization_dataset args: document metrics: - name: Rouge1 type: rouge value: 27.0012 --- # distilbart-xsum-12-1-finetuned-pubmed This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-1](https://huggingface.co/sshleifer/distilbart-xsum-12-1) on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: 2.8236 - Rouge1: 27.0012 - Rouge2: 12.728 - Rougel: 19.8685 - Rougelsum: 25.0485 - Gen Len: 59.969 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 3.3604 | 1.0 | 4000 | 3.1575 | 25.0078 | 11.5381 | 18.4246 | 23.1605 | 54.8935 | | 3.0697 | 2.0 | 8000 | 2.9478 | 26.4947 | 12.5411 | 19.4328 | 24.6123 | 57.948 | | 2.8638 | 3.0 | 12000 | 2.8672 | 26.8856 | 12.7568 | 19.8949 | 24.8745 | 59.6245 | | 2.7243 | 4.0 | 16000 | 2.8347 | 26.7347 | 12.5152 | 19.6516 | 24.7756 | 60.439 | | 2.6072 | 5.0 | 20000 | 2.8236 | 27.0012 | 12.728 | 19.8685 | 25.0485 | 59.969 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6