--- license: apache-2.0 tags: - generated_from_trainer datasets: - pub_med_summarization_dataset metrics: - rouge model-index: - name: distilbart-cnn-6-6-finetuned-pubmed results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: pub_med_summarization_dataset type: pub_med_summarization_dataset args: document metrics: - name: Rouge1 type: rouge value: 39.2769 --- # distilbart-cnn-6-6-finetuned-pubmed This model is a fine-tuned version of [sshleifer/distilbart-cnn-6-6](https://huggingface.co/sshleifer/distilbart-cnn-6-6) on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: 2.0648 - Rouge1: 39.2769 - Rouge2: 15.876 - Rougel: 24.2306 - Rougelsum: 35.267 - Gen Len: 141.8565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 2.2215 | 1.0 | 4000 | 2.0781 | 37.2476 | 14.2852 | 22.6875 | 33.1607 | 141.97 | | 2.0105 | 2.0 | 8000 | 2.0217 | 37.8038 | 14.7869 | 23.2025 | 33.7069 | 141.918 | | 1.8331 | 3.0 | 12000 | 2.0243 | 39.0497 | 15.8077 | 24.2237 | 34.9371 | 141.822 | | 1.6936 | 4.0 | 16000 | 2.0487 | 38.7059 | 15.4364 | 23.8514 | 34.7771 | 141.878 | | 1.5817 | 5.0 | 20000 | 2.0648 | 39.2769 | 15.876 | 24.2306 | 35.267 | 141.8565 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6