---
base_model: sentence-transformers/all-mpnet-base-v2
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5489
- loss:TripletLoss
widget:
- source_sentence: 07 42 33 Plastic Wall Panels
sentences:
- 03 31 00 Structural Concrete
- 05 53 13 Bar Gratings
- 07 42 43 Composite Wall Panels
- source_sentence: 08 33 36 Side Coiling Grilles
sentences:
- 06 16 36 Wood Panel Product Sheathing
- 08 33 43 Overhead Coiling Smoke Curtains
- 27 01 50 Operation and Maintenance of Distributed Communications and Monitoring
- source_sentence: 14 42 16 Vertical Wheelchair Lifts
sentences:
- 14 43 13 Orchestra Lifts
- 07 18 13 Pedestrian Traffic Coatings
- 12 25 13 Motorized Drapery Rods
- source_sentence: 08 11 23 Bronze Doors and Frames
sentences:
- 08 11 63 Metal Screen and Storm Doors and Frames
- 06 13 33 Heavy Timber Pier Construction
- 12 55 86 Detention Control Room Furniture
- source_sentence: 01 32 26 Construction Progress Reporting
sentences:
- 28 31 00 intrusion detection.
- 03 45 33 Precast Architectural Pretensioned Concrete
- 01 32 29 Periodic Work Observation
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'01 32 26 Construction Progress Reporting',
'01 32 29 Periodic Work Observation',
'03 45 33 Precast Architectural Pretensioned Concrete',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 5,489 training samples
* Columns: sentence_0
, sentence_1
, and sentence_2
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | sentence_2 |
|:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details |
03 41 13 Precast Concrete Hollow Core Planks
| 03 41 16 Precast Concrete Slabs
| 05 58 23 Formed Metal Guards
|
| 21 11 16 Facility Fire Hydrants
| 21 31 13 Electric-Drive, Centrifugal Fire Pumps
| 26 21 00 Low-Voltage Electrical Service Entrance
|
| 26 27 19 Multi-Outlet Assemblies
| 26 27 23 Indoor Service Poles
| 31 73 00 Tunnel Grouting
|
* Loss: [TripletLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters