File size: 1,580 Bytes
278b585 cf87c50 278b585 cf87c50 278b585 cf87c50 278b585 cf87c50 278b585 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- OpenTable
metrics:
- accuracy
model-index:
- name: gpt2.CEBaB_confounding.price_food_ambiance_negative.absa.5-class.seed_42
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: OpenTable OPENTABLE-ABSA
type: OpenTable
args: opentable-absa
metrics:
- name: Accuracy
type: accuracy
value: 0.8310893512851897
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2.CEBaB_confounding.price_food_ambiance_negative.absa.5-class.seed_42
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the OpenTable OPENTABLE-ABSA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4726
- Accuracy: 0.8311
- Macro-f1: 0.8295
- Weighted-macro-f1: 0.8313
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.2+cu102
- Datasets 2.5.2
- Tokenizers 0.12.1
|