Kalamazooter
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,84 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
base_model: state-spaces/mamba-130m-hf
|
4 |
+
tokenizer: yhavinga/dutch-llama-tokenizer
|
5 |
+
datasets: Kalamazooter/GeminiPhiDutch
|
6 |
---
|
7 |
+
# A Tiny Dutch model, just-about semi-coherent
|
8 |
+
|
9 |
+
![RatelSlang](RatelSlang-Micro.jpg)
|
10 |
+
|
11 |
+
## Overview
|
12 |
+
|
13 |
+
An experimental fine-tune of [mamba-130m](https://hf.co/state-spaces/mamba-130m-hf) using the [GeminiPhi Dataset](https://hf.co/Kalamazooter/GeminiPhiDutch)
|
14 |
+
|
15 |
+
# Usage
|
16 |
+
|
17 |
+
You need to install `transformers` from `main` until `transformers=4.39.0` is released.
|
18 |
+
```bash
|
19 |
+
pip install git+https://github.com/huggingface/transformers@main
|
20 |
+
```
|
21 |
+
|
22 |
+
We also recommend you to install both `causal_conv_1d` and `mamba-ssm` using:
|
23 |
+
|
24 |
+
```bash
|
25 |
+
pip install causal-conv1d>=1.2.0
|
26 |
+
pip install mamba-ssm
|
27 |
+
```
|
28 |
+
|
29 |
+
If any of these two is not installed, the "eager" implementation will be used. Otherwise the more optimised `cuda` kernels will be used.
|
30 |
+
|
31 |
+
## Generation
|
32 |
+
You can use the classic `generate` API:
|
33 |
+
**setup (For Cuda)**
|
34 |
+
```python
|
35 |
+
from transformers import MambaConfig, MambaForCausalLM, AutoTokenizer
|
36 |
+
import torch
|
37 |
+
device = torch.device('cuda:0')
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained("Kalamazooter/RatelSlang-Micro-130M")
|
39 |
+
model = MambaForCausalLM.from_pretrained("Kalamazooter/RatelSlang-Micro-130M")
|
40 |
+
model = model.to(device)
|
41 |
+
```
|
42 |
+
**Inference**
|
43 |
+
```python
|
44 |
+
input_ids = tokenizer("**Vraag: Ik heb 4 schapen, per schaap heb ik 3 lammetjes, hoeveel lammetjes heb ik?\n\n Antwoord:", return_tensors="pt").input_ids.to(device)
|
45 |
+
out = model.generate(input_ids, max_new_tokens=50)
|
46 |
+
print(tokenizer.batch_decode(out))
|
47 |
+
['<s> **Vraag: Ik heb 4 schapen, per schaap heb ik 3 lammetjes, hoeveel lammetjes heb ik?\n\n Antwoord:\n\n1. Bereken het aantal lammetjes dat je hebt: 4 schapen x 3 lammetjes per schaap = 12 lammetjes\n2. Bereken het aantal lammetjes dat je hebt: 12 lam']
|
48 |
+
```
|
49 |
+
|
50 |
+
## PEFT finetuning example
|
51 |
+
In order to finetune using the `peft` library, it is recommend to keep the model in float32!
|
52 |
+
|
53 |
+
```python
|
54 |
+
from datasets import load_dataset
|
55 |
+
from trl import SFTTrainer
|
56 |
+
from peft import LoraConfig
|
57 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained("Kalamazooter/RatelSlang-Micro-130M")
|
59 |
+
model = AutoModelForCausalLM.from_pretrained("Kalamazooter/RatelSlang-Micro-130M")
|
60 |
+
dataset = load_dataset("Abirate/english_quotes", split="train")
|
61 |
+
training_args = TrainingArguments(
|
62 |
+
output_dir="./results",
|
63 |
+
num_train_epochs=3,
|
64 |
+
per_device_train_batch_size=4,
|
65 |
+
logging_dir='./logs',
|
66 |
+
logging_steps=10,
|
67 |
+
learning_rate=2e-3
|
68 |
+
)
|
69 |
+
lora_config = LoraConfig(
|
70 |
+
r=8,
|
71 |
+
target_modules=["x_proj", "embeddings", "in_proj", "out_proj"],
|
72 |
+
task_type="CAUSAL_LM",
|
73 |
+
bias="none"
|
74 |
+
)
|
75 |
+
trainer = SFTTrainer(
|
76 |
+
model=model,
|
77 |
+
tokenizer=tokenizer,
|
78 |
+
args=training_args,
|
79 |
+
peft_config=lora_config,
|
80 |
+
train_dataset=dataset,
|
81 |
+
dataset_text_field="quote",
|
82 |
+
)
|
83 |
+
trainer.train()
|
84 |
+
```
|