--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small AR - Mohammed Bakheet results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: ar split: test args: ar metrics: - name: Wer type: wer value: 20.45616669795382 --- # Whisper Small AR - Mohammed Bakheet This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2601 - Wer: 20.4562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.5279 | 0.4158 | 500 | 0.3311 | 27.6591 | | 0.2513 | 0.8316 | 1000 | 0.2866 | 24.5504 | | 0.1673 | 1.2478 | 1500 | 0.2735 | 22.8928 | | 0.1324 | 1.6635 | 2000 | 0.2645 | 21.8153 | | 0.1138 | 2.0797 | 2500 | 0.2613 | 21.3816 | | 0.064 | 2.4955 | 3000 | 0.2651 | 21.0006 | | 0.0615 | 2.9113 | 3500 | 0.2601 | 20.4562 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3