Update README.md
Browse files
README.md
CHANGED
@@ -1,70 +1,70 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
language: en
|
4 |
-
|
5 |
-
tags:
|
6 |
-
|
7 |
-
- sentence correction
|
8 |
-
|
9 |
-
- text2text-generation
|
10 |
-
|
11 |
-
license: cc-by-nc-sa-4.0
|
12 |
-
|
13 |
-
datasets:
|
14 |
-
|
15 |
-
- jfleg
|
16 |
-
|
17 |
-
---
|
18 |
-
|
19 |
-
# Model
|
20 |
-
This model utilises T5-base sentence correction pre-trained model. It was fine tuned using a modified version of the [JFLEG](https://arxiv.org/abs/1702.04066) dataset and [Happy Transformer framework](https://github.com/EricFillion/happy-transformer). This model was pre-trained for educational purposes only for correction on local Caribbean
|
21 |
-
.
|
22 |
-
___
|
23 |
-
|
24 |
-
|
25 |
-
# Re-training/Fine Tuning
|
26 |
-
|
27 |
-
The results of fine-tuning resulted in a final accuracy of 90%
|
28 |
-
|
29 |
-
|
30 |
-
# Usage
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
```python
|
35 |
-
|
36 |
-
from happytransformer import HappyTextToText, TTSettings
|
37 |
-
|
38 |
-
pre_trained_model="T5"
|
39 |
-
model = HappyTextToText(pre_trained_model, "KES/T5-KES")
|
40 |
-
|
41 |
-
arguments = TTSettings(num_beams=4, min_length=1)
|
42 |
-
sentence = "Wat iz your nam"
|
43 |
-
|
44 |
-
correction = model.generate_text("grammar: "+sentence, args=arguments)
|
45 |
-
if(correction.text.find(" .")):
|
46 |
-
correction.text=correction.text.replace(" .", ".")
|
47 |
-
|
48 |
-
print(correction.text) # Correction: "What is your name?".
|
49 |
-
|
50 |
-
```
|
51 |
-
_
|
52 |
-
# Usage with Transformers
|
53 |
-
|
54 |
-
```python
|
55 |
-
|
56 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
57 |
-
|
58 |
-
tokenizer = AutoTokenizer.from_pretrained("KES/T5-KES")
|
59 |
-
|
60 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("KES/T5-KES")
|
61 |
-
|
62 |
-
text = "I am lived with my parenmts "
|
63 |
-
inputs = tokenizer("grammar:"+text, truncation=True, return_tensors='pt')
|
64 |
-
|
65 |
-
output = model.generate(inputs['input_ids'], num_beams=4, max_length=512, early_stopping=True)
|
66 |
-
correction=tokenizer.batch_decode(output, skip_special_tokens=True)
|
67 |
-
print("".join(correction)) #Correction: I am living with my parents.
|
68 |
-
|
69 |
-
```
|
70 |
-
|
|
|
1 |
+
---
|
2 |
+
|
3 |
+
language: en
|
4 |
+
|
5 |
+
tags:
|
6 |
+
|
7 |
+
- sentence correction
|
8 |
+
|
9 |
+
- text2text-generation
|
10 |
+
|
11 |
+
license: cc-by-nc-sa-4.0
|
12 |
+
|
13 |
+
datasets:
|
14 |
+
|
15 |
+
- jfleg
|
16 |
+
|
17 |
+
---
|
18 |
+
|
19 |
+
# Model
|
20 |
+
This model utilises T5-base sentence correction pre-trained model. It was fine tuned using a modified version of the [JFLEG](https://arxiv.org/abs/1702.04066) dataset and [Happy Transformer framework](https://github.com/EricFillion/happy-transformer). This model was pre-trained for educational purposes only for correction on local Caribbean English Creole. For more on the Caribbean English Creole checkout the library [Caribe](https://pypi.org/project/Caribe/).
|
21 |
+
.
|
22 |
+
___
|
23 |
+
|
24 |
+
|
25 |
+
# Re-training/Fine Tuning
|
26 |
+
|
27 |
+
The results of fine-tuning resulted in a final accuracy of 90%
|
28 |
+
|
29 |
+
|
30 |
+
# Usage
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
```python
|
35 |
+
|
36 |
+
from happytransformer import HappyTextToText, TTSettings
|
37 |
+
|
38 |
+
pre_trained_model="T5"
|
39 |
+
model = HappyTextToText(pre_trained_model, "KES/T5-KES")
|
40 |
+
|
41 |
+
arguments = TTSettings(num_beams=4, min_length=1)
|
42 |
+
sentence = "Wat iz your nam"
|
43 |
+
|
44 |
+
correction = model.generate_text("grammar: "+sentence, args=arguments)
|
45 |
+
if(correction.text.find(" .")):
|
46 |
+
correction.text=correction.text.replace(" .", ".")
|
47 |
+
|
48 |
+
print(correction.text) # Correction: "What is your name?".
|
49 |
+
|
50 |
+
```
|
51 |
+
_
|
52 |
+
# Usage with Transformers
|
53 |
+
|
54 |
+
```python
|
55 |
+
|
56 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
57 |
+
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained("KES/T5-KES")
|
59 |
+
|
60 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("KES/T5-KES")
|
61 |
+
|
62 |
+
text = "I am lived with my parenmts "
|
63 |
+
inputs = tokenizer("grammar:"+text, truncation=True, return_tensors='pt')
|
64 |
+
|
65 |
+
output = model.generate(inputs['input_ids'], num_beams=4, max_length=512, early_stopping=True)
|
66 |
+
correction=tokenizer.batch_decode(output, skip_special_tokens=True)
|
67 |
+
print("".join(correction)) #Correction: I am living with my parents.
|
68 |
+
|
69 |
+
```
|
70 |
+
|