File size: 12,821 Bytes
b90f2b8
 
ace3987
224bcbd
b90f2b8
224bcbd
 
 
 
283ed50
224bcbd
283ed50
224bcbd
 
 
 
 
 
 
283ed50
224bcbd
 
 
 
 
 
 
 
 
 
 
 
 
d3b74de
224bcbd
 
 
 
 
 
25c9ee1
 
b90f2b8
 
 
 
a65f4bc
b90f2b8
01d0410
a42c18b
a65f4bc
 
 
 
 
 
 
 
b90f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
104c555
b90f2b8
 
 
 
 
 
28b01d0
 
 
 
 
 
 
 
 
 
 
 
 
 
b90f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104c555
b90f2b8
 
a65f4bc
104c555
 
b90f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28b01d0
 
 
 
 
 
 
 
b90f2b8
 
 
 
 
a65f4bc
 
 
 
 
 
 
b90f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97d49ab
b90f2b8
a65f4bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b90f2b8
 
 
a65f4bc
a42c18b
a65f4bc
b90f2b8
 
 
 
 
ace3987
b90f2b8
 
 
 
 
 
 
 
 
 
 
ace3987
b90f2b8
 
 
ace3987
b90f2b8
 
ace3987
b90f2b8
 
 
ace3987
b90f2b8
 
 
 
 
 
 
 
12b144a
b90f2b8
 
 
 
 
 
 
 
 
a42c18b
 
e5e754a
caba06f
 
 
 
 
4287315
e5e754a
4287315
b90f2b8
 
224bcbd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
---
pipeline_tag: sentence-similarity
lang:
- sv
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
widget:
- source_sentence: Mannen åt mat.
  sentences:
  - Han förtärde en närande och nyttig måltid.
  - Det var ett sunkigt hak med ganska gott käk.
  - Han inmundigade middagen tillsammans med ett glas rödvin.
  - Potatischips är jättegoda.
  - Tryck  knappen för att  tala med kundsupporten.
  example_title: Mat
- source_sentence: Kan jag deklarera digitalt från utlandet?
  sentences:
  - Du som befinner dig i utlandet kan deklarera digitalt  flera olika sätt.
  - >-
    Du som har kvarskatt att betala ska göra en inbetalning till ditt
    skattekonto.
  - >-
    Efter att du har deklarerat går vi igenom uppgifterna i din deklaration och
    räknar ut din skatt.
  - >-
    I din deklaration som du får från oss har vi räknat ut vad du ska betala
    eller få tillbaka.
  - Tryck  knappen för att  tala med kundsupporten.
  example_title: Skatteverket FAQ
- source_sentence: Hon kunde göra bakåtvolter.
  sentences:
  - Hon var atletisk.
  - Hon var bra  gymnastik.
  - Hon var inte atletisk.
  - Hon var oförmögen att flippa baklänges.
  example_title: Gymnastik
license: apache-2.0
language:
- sv
---

# KBLab/sentence-bert-swedish-cased

This is a [sentence-transformers](https://www.SBERT.net) model: It maps Swedish sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. This model is a bilingual Swedish-English model trained according to instructions in the paper [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/pdf/2004.09813.pdf) and the [documentation](https://www.sbert.net/examples/training/multilingual/README.html) accompanying its companion python package. We have used the strongest available pretrained English Bi-Encoder ([all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)) as a teacher model, and the pretrained Swedish [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased) as the student model. 

A more detailed description of the model can be found in an article we published on the KBLab blog [here](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/) and for the updated model [here](https://kb-labb.github.io/posts/2023-01-16-sentence-transformer-20/). 

**Update**: We have released updated versions of the model since the initial release. The original model described in the blog post is **v1.0**. The current version is **v2.0**. The newer versions are trained on longer paragraphs, and have a longer max sequence length. **v2.0** is trained with a stronger teacher model and is the current default.

| Model version | Teacher Model | Max Sequence Length |
|---------------|---------|----------|
| v1.0          | [paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)  | 256   |
| v1.1          | [paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)  | 384   |
| v2.0          | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)  | 384 |

<!--- Describe your model here -->

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["Det här är en exempelmening", "Varje exempel blir konverterad"]

model = SentenceTransformer('KBLab/sentence-bert-swedish-cased')
embeddings = model.encode(sentences)
print(embeddings)
```

### Loading an older model version (Sentence-Transformers)

Currently, the easiest way to load an older model version is to clone the model repository and load it from disk. For example, to clone the **v1.0** model:

```bash
git clone --depth 1 --branch v1.0 https://huggingface.co/KBLab/sentence-bert-swedish-cased
```

Then you can load the model by pointing to the local folder where you cloned the model:

```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("path_to_model_folder/sentence-bert-swedish-cased")
```


## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['Det här är en exempelmening', 'Varje exempel blir konverterad']

# Load model from HuggingFace Hub
# To load an older version, e.g. v1.0, add the argument revision="v1.0" 
tokenizer = AutoTokenizer.from_pretrained('KBLab/sentence-bert-swedish-cased')
model = AutoModel.from_pretrained('KBLab/sentence-bert-swedish-cased')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```

### Loading an older model (Hugginfface Transformers)

To load an older model specify the version tag with the `revision` arg. For example, to load the **v1.0** model, use the following code: 

```python
AutoTokenizer.from_pretrained('KBLab/sentence-bert-swedish-cased', revision="v1.0")
AutoModel.from_pretrained('KBLab/sentence-bert-swedish-cased', revision="v1.0")
```

## Evaluation Results

<!--- Describe how your model was evaluated -->

The model was evaluated on [SweParaphrase v1.0](https://spraakbanken.gu.se/en/resources/sweparaphrase) and **SweParaphrase v2.0**. This test set is part of [SuperLim](https://spraakbanken.gu.se/en/resources/superlim) -- a Swedish evaluation suite for natural langage understanding tasks.  We calculated Pearson and Spearman correlation between predicted model similarity scores and the human similarity score labels. Results from **SweParaphrase v1.0** are displayed below. 

| Model version | Pearson | Spearman |
|---------------|---------|----------|
| v1.0          | 0.9183  | 0.9114   |
| v1.1          | 0.9183  | 0.9114   |
| v2.0          | **0.9283**  | **0.9130**   |

The following code snippet can be used to reproduce the above results:

```python
from sentence_transformers import SentenceTransformer
import pandas as pd

df = pd.read_csv(
    "sweparaphrase-dev-165.csv",
    sep="\t",
    header=None,
    names=[
        "original_id",
        "source",
        "type",
        "sentence_swe1",
        "sentence_swe2",
        "score",
        "sentence1",
        "sentence2",
    ],
)

model = SentenceTransformer("KBLab/sentence-bert-swedish-cased")

sentences1 = df["sentence_swe1"].tolist()
sentences2 = df["sentence_swe2"].tolist()

# Compute embedding for both lists
embeddings1 = model.encode(sentences1, convert_to_tensor=True)
embeddings2 = model.encode(sentences2, convert_to_tensor=True)

# Compute cosine similarity after normalizing
embeddings1 /= embeddings1.norm(dim=-1, keepdim=True)
embeddings2 /= embeddings2.norm(dim=-1, keepdim=True)

cosine_scores = embeddings1 @ embeddings2.t()
sentence_pair_scores = cosine_scores.diag()

df["model_score"] = sentence_pair_scores.cpu().tolist()
print(df[["score", "model_score"]].corr(method="spearman"))
print(df[["score", "model_score"]].corr(method="pearson"))
```

### Sweparaphrase v2.0

In general, **v1.1** correlates the most with human assessment of text similarity on SweParaphrase v2.0. Below, we present zero-shot evaluation results on all data splits. They display the model's performance out of the box, without any fine-tuning.

| Model version | Data split | Pearson    | Spearman   |
|---------------|------------|------------|------------|
| v1.0          | train      | 0.8355     | 0.8256     |
| v1.1          | train      | **0.8383** | **0.8302** |
| v2.0          | train      | 0.8209     | 0.8059     |
| v1.0          | dev        | 0.8682     | 0.8774     |
| v1.1          | dev        | **0.8739** | **0.8833** |
| v2.0          | dev        | 0.8638     | 0.8668     |
| v1.0          | test       | 0.8356     | 0.8476     |
| v1.1          | test       | **0.8393** | **0.8550** |
| v2.0          | test       | 0.8232     | 0.8213     |

### SweFAQ v2.0

When it comes to retrieval tasks, **v2.0** performs the best by quite a substantial margin. It is better at matching the correct answer to a question compared to v1.1 and v1.0.

| Model version | Data split | Accuracy   |
|---------------|------------|------------|
| v1.0          | train      | 0.5262     |
| v1.1          | train      | 0.6236     |
| v2.0          | train      | **0.7106** |
| v1.0          | dev        | 0.4636     |
| v1.1          | dev        | 0.5818     |
| v2.0          | dev        | **0.6727** |
| v1.0          | test       | 0.4495     |
| v1.1          | test       | 0.5229     |
| v2.0          | test       | **0.5871** |


Examples how to evaluate the models on some of the test sets of the SuperLim suites can be found on the following links: [evaluate_faq.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_faq.py) (Swedish FAQ), [evaluate_swesat.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_swesat.py) (SweSAT synonyms), [evaluate_supersim.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_supersim.py) (SuperSim).

## Training

An article with more details on data and v1.0 of the model can be found on the [KBLab blog](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/). 

Around 14.6 million sentences from English-Swedish parallel corpuses were used to train the model. Data was sourced from the [Open Parallel Corpus](https://opus.nlpl.eu/) (OPUS) and downloaded via the python package [opustools](https://pypi.org/project/opustools/). Datasets used were: JW300, Europarl, DGT-TM, EMEA, ELITR-ECA, TED2020, Tatoeba and OpenSubtitles. 

The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 180513 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`sentence_transformers.losses.MSELoss.MSELoss` 

Parameters of the fit()-Method:
```
{
    "epochs": 2,
    "evaluation_steps": 1000,
    "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "eps": 1e-06,
        "lr": 8e-06
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 5000,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citing & Authors

<!--- Describe where people can find more information -->
This model was trained by KBLab, a data lab at the National Library of Sweden. 

You can cite the article on our blog: https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/ .

```
@misc{rekathati2021introducing,  
  author = {Rekathati, Faton},  
  title = {The KBLab Blog: Introducing a Swedish Sentence Transformer},  
  url = {https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/},  
  year = {2021}  
}
```

## Acknowledgements

We gratefully acknowledge the HPC RIVR consortium ([www.hpc-rivr.si](https://www.hpc-rivr.si/)) and EuroHPC JU ([eurohpc-ju.europa.eu/](https://eurohpc-ju.europa.eu/)) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science ([www.izum.si](https://www.izum.si/)).