ChatGLM-6b-onnx-u8s8 / tokenizer.py
K024's picture
Update tokenizer.py
a108e1a
raw
history blame
2.81 kB
import re
from sentencepiece import SentencePieceProcessor
def replace_spaces_with_blank(match: re.Match[str]):
return f"<|blank_{len(match.group())}|>"
def replace_blank_with_spaces(match: re.Match[str]):
return " " * int(match.group(1))
class ChatGLMTokenizer:
def __init__(self, vocab_file):
assert vocab_file is not None
self.vocab_file = vocab_file
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
self.text_tokenizer = SentencePieceProcessor(str(vocab_file))
def __len__(self):
return len(self.text_tokenizer)
def __getitem__(self, key: str):
return self.text_tokenizer[key]
def preprocess(self, text: str, linebreak=True, whitespaces=True):
if linebreak:
text = text.replace("\n", "<n>")
if whitespaces:
text = text.replace("\t", "<|tab|>")
text = re.sub(r" {2,80}", replace_spaces_with_blank, text)
return text
def encode(
self, text: str, text_pair: str = None,
linebreak=True, whitespaces=True,
add_dummy_prefix=True, special_tokens=True,
) -> tuple[list[int], list[int]]:
"""
text: Text to encode. Bidirectional part with a [gMASK] and an <sop> for causal LM.
text_pair: causal LM part.
linebreak: Whether to encode newline (\n) in text.
whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
add_dummy_prefix: Whether to add dummy blank space in the beginning.
"""
text = self.preprocess(text, linebreak, whitespaces)
if not add_dummy_prefix:
text = "<n>" + text
tokens = self.text_tokenizer.encode(text)
prefix_mask = [1] * len(tokens)
if special_tokens:
tokens += [self.text_tokenizer["[gMASK]"], self.text_tokenizer["<sop>"]]
prefix_mask += [1, 0]
if text_pair is not None:
text_pair = self.preprocess(text_pair, linebreak, whitespaces)
pair_tokens = self.text_tokenizer.encode(text_pair)
tokens += pair_tokens
prefix_mask += [0] * len(pair_tokens)
if special_tokens:
tokens += [self.text_tokenizer["<eop>"]]
prefix_mask += [0]
return (tokens if add_dummy_prefix else tokens[2:]), prefix_mask
def decode(self, text_ids: list[int]) -> str:
text = self.text_tokenizer.decode(text_ids)
text = text.replace("<n>", "\n")
text = text.replace("<|tab|>", "\t")
text = re.sub(r"<\|blank_(\d\d?)\|>", replace_blank_with_spaces, text)
return text