--- base_model: JunxiongWang/mamba_0_75_sft tags: - alignment-handbook - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: mamba_0_75_dpo_ep3 results: [] --- Please check [here](https://github.com/jxiw/MambaInLlama/tree/main) for details. # mamba_0_75_dpo_ep3 This model is a fine-tuned version of [JunxiongWang/mamba_0_75_sft](https://huggingface.co/JunxiongWang/mamba_0_75_sft) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.7077 - Rewards/chosen: -4.3611 - Rewards/rejected: -7.0013 - Rewards/accuracies: 0.7812 - Rewards/margins: 2.6403 - Logps/rejected: -333.1784 - Logps/chosen: -302.4903 - Logits/rejected: -2.8351 - Logits/chosen: -2.8752 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.1188 | 1.0466 | 2000 | 0.5385 | -1.3137 | -2.8323 | 0.7852 | 1.5186 | -291.4879 | -272.0161 | -2.9057 | -2.9472 | | 0.0093 | 2.0931 | 4000 | 0.7077 | -4.3611 | -7.0013 | 0.7812 | 2.6403 | -333.1784 | -302.4903 | -2.8351 | -2.8752 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.0+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1 [MambaInLlama](arxiv.org/abs/2408.15237) ``` @article{junxiongdaniele2024mambainllama, title = {The Mamba in the Llama: Distilling and Accelerating Hybrid Models}, author = {Junxiong Wang and Daniele Paliotta and Avner May and Alexander M. Rush and Tri Dao}, journal = {arXiv preprint arXiv:2408.15237}, year = {2024} } ```