Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.10 +/- 0.93
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a2b0b49379fb8ae0b03812fa923369a57b5e82ae5d23552ad10ad37fbf2f1de
|
3 |
+
size 108028
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff872be8f70>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff872be9940>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1679698753795988262,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA/EbXPv7XFL2X0RI//EbXPv7XFL2X0RI//EbXPv7XFL2X0RI//EbXPv7XFL2X0RI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfXSTPy2FKD+d4vm9OjKiP5YA2D8vnjW+Xkk/PntDmz6Uu6q/J340v642lz76B48/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD8Rtc+/tcUvZfREj/06Ga7b3eUu2zm7zr8Rtc+/tcUvZfREj/06Ga7b3eUu2zm7zr8Rtc+/tcUvZfREj/06Ga7b3eUu2zm7zr8Rtc+/tcUvZfREj/06Ga7b3eUu2zm7zqUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.42046344 -0.0363388 0.5735106 ]\n [ 0.42046344 -0.0363388 0.5735106 ]\n [ 0.42046344 -0.0363388 0.5735106 ]\n [ 0.42046344 -0.0363388 0.5735106 ]]",
|
60 |
+
"desired_goal": "[[ 1.1519924 0.6582821 -0.12201426]\n [ 1.2671578 1.6875179 -0.17736124]\n [ 0.18680331 0.3032492 -1.3338494 ]\n [-0.70504993 0.29533905 1.1174309 ]]",
|
61 |
+
"observation": "[[ 0.42046344 -0.0363388 0.5735106 -0.00352341 -0.00453084 0.00183029]\n [ 0.42046344 -0.0363388 0.5735106 -0.00352341 -0.00453084 0.00183029]\n [ 0.42046344 -0.0363388 0.5735106 -0.00352341 -0.00453084 0.00183029]\n [ 0.42046344 -0.0363388 0.5735106 -0.00352341 -0.00453084 0.00183029]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/Si7vP5pIz0TQ+Y9oCZ0Pc83373wJGg+TTHlPSIGeT3oOBU+PZTwvZ3qJD1XJEY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.02284669 0.039896 0.11243262]\n [ 0.05960715 -0.10899317 0.2267034 ]\n [ 0.11191044 0.06079686 0.1457249 ]\n [-0.11747024 0.04026281 0.193498 ]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5GVNLPCV8r+UhpRSlIwBbJRLMowBdJRHQKfZtAgPmPp1fZQoaAZoCWgPQwiWWYRiK6jzv5SGlFKUaBVLMmgWR0Cn2XV7IDHPdX2UKGgGaAloD0MIlBPtKqR8CsCUhpRSlGgVSzJoFkdAp9k2UyHmBHV9lChoBmgJaA9DCAfvq3Khcvi/lIaUUpRoFUsyaBZHQKfY94TK1Xx1fZQoaAZoCWgPQwigpSvYRhwIwJSGlFKUaBVLMmgWR0Cn2tjHfdhzdX2UKGgGaAloD0MIl65gG/Ek9L+UhpRSlGgVSzJoFkdAp9qaQeV9nnV9lChoBmgJaA9DCPcEie3uAQ/AlIaUUpRoFUsyaBZHQKfaWwYcebN1fZQoaAZoCWgPQwjb+1QVGkj9v5SGlFKUaBVLMmgWR0Cn2hxbSqlxdX2UKGgGaAloD0MIamyvBb33DcCUhpRSlGgVSzJoFkdAp9vxkVeruXV9lChoBmgJaA9DCLyQDg9h/AHAlIaUUpRoFUsyaBZHQKfbsyqMm4R1fZQoaAZoCWgPQwhaLbDHRCoBwJSGlFKUaBVLMmgWR0Cn23PVmSQpdX2UKGgGaAloD0MIyXISSl8I6b+UhpRSlGgVSzJoFkdAp9s1YB/7SHV9lChoBmgJaA9DCFeyYyMQjwrAlIaUUpRoFUsyaBZHQKfdCeA/cFh1fZQoaAZoCWgPQwh+/KVFfZL/v5SGlFKUaBVLMmgWR0Cn3Mv8IiTudX2UKGgGaAloD0MIizcyj/xBD8CUhpRSlGgVSzJoFkdAp9yM/D+BH3V9lChoBmgJaA9DCBa+vtalxvq/lIaUUpRoFUsyaBZHQKfcTlpXZGt1fZQoaAZoCWgPQwgdIQN5dhkEwJSGlFKUaBVLMmgWR0Cn3l24/eLvdX2UKGgGaAloD0MIX3mQniJ3E8CUhpRSlGgVSzJoFkdAp94fLaEi+3V9lChoBmgJaA9DCC/h0Fs8fADAlIaUUpRoFUsyaBZHQKfd3/bTMJR1fZQoaAZoCWgPQwiZKhiV1En6v5SGlFKUaBVLMmgWR0Cn3aINd7fIdX2UKGgGaAloD0MIvalIhbGF5L+UhpRSlGgVSzJoFkdAp9+BMBZIQXV9lChoBmgJaA9DCERpb/CFqQLAlIaUUpRoFUsyaBZHQKffQqCHymR1fZQoaAZoCWgPQwjAeAYN/ZP4v5SGlFKUaBVLMmgWR0Cn3wNke6qbdX2UKGgGaAloD0MIQwBw7NlTAcCUhpRSlGgVSzJoFkdAp97EtAcDKnV9lChoBmgJaA9DCBfWjXdHxva/lIaUUpRoFUsyaBZHQKfgqDSPU8V1fZQoaAZoCWgPQwiES8ecZ2z1v5SGlFKUaBVLMmgWR0Cn4Gp/wy6+dX2UKGgGaAloD0MI64zvi0v1AMCUhpRSlGgVSzJoFkdAp+AslzEJjXV9lChoBmgJaA9DCEeP39v05/+/lIaUUpRoFUsyaBZHQKff7hTfixV1fZQoaAZoCWgPQwiughjo2hcFwJSGlFKUaBVLMmgWR0Cn4db2L5ymdX2UKGgGaAloD0MIZAPpYtNK6L+UhpRSlGgVSzJoFkdAp+GYqEvkBHV9lChoBmgJaA9DCMbE5uPaUP2/lIaUUpRoFUsyaBZHQKfhWZrHlwN1fZQoaAZoCWgPQwg+IqZEEm0XwJSGlFKUaBVLMmgWR0Cn4RsQVbiZdX2UKGgGaAloD0MIP3EA/b7fG8CUhpRSlGgVSzJoFkdAp+Mk8/2TPnV9lChoBmgJaA9DCPQWD+85sPO/lIaUUpRoFUsyaBZHQKfi5z3AVO91fZQoaAZoCWgPQwh7oYDtYJQTwJSGlFKUaBVLMmgWR0Cn4qlCb+cZdX2UKGgGaAloD0MI1hwgmKNH5b+UhpRSlGgVSzJoFkdAp+JrpzLfUHV9lChoBmgJaA9DCK8I/reSHe2/lIaUUpRoFUsyaBZHQKfk5jx0+1V1fZQoaAZoCWgPQwhbYI+JlGbpv5SGlFKUaBVLMmgWR0Cn5KiSRr8BdX2UKGgGaAloD0MIFop0P6fg8r+UhpRSlGgVSzJoFkdAp+RqXa8HwHV9lChoBmgJaA9DCOkpcoi4uQbAlIaUUpRoFUsyaBZHQKfkLIcR15l1fZQoaAZoCWgPQwg7b2OzI9Xxv5SGlFKUaBVLMmgWR0Cn5rFwtJ4CdX2UKGgGaAloD0MIl1RtN8E34r+UhpRSlGgVSzJoFkdAp+ZzoEB8yHV9lChoBmgJaA9DCE3WqIdoFAPAlIaUUpRoFUsyaBZHQKfmNVinYQJ1fZQoaAZoCWgPQwi7YkZ4e7ABwJSGlFKUaBVLMmgWR0Cn5fd8Rcu8dX2UKGgGaAloD0MIndfYJaq3AcCUhpRSlGgVSzJoFkdAp+if5ULlWHV9lChoBmgJaA9DCJ86Vik9U/u/lIaUUpRoFUsyaBZHQKfoYlD4QBh1fZQoaAZoCWgPQwjecvVjk/z1v5SGlFKUaBVLMmgWR0Cn6CQ/HHWCdX2UKGgGaAloD0MIEarU7IFW4L+UhpRSlGgVSzJoFkdAp+fmjynUD3V9lChoBmgJaA9DCPRPcLGiBu2/lIaUUpRoFUsyaBZHQKfqlMW43FV1fZQoaAZoCWgPQwje/8cJE8bnv5SGlFKUaBVLMmgWR0Cn6ld9lVcVdX2UKGgGaAloD0MI8rVnlgTo8r+UhpRSlGgVSzJoFkdAp+oZc3VConV9lChoBmgJaA9DCN0Gtd/aiQ3AlIaUUpRoFUsyaBZHQKfp29RJmNB1fZQoaAZoCWgPQwib/1cdOXILwJSGlFKUaBVLMmgWR0Cn7G7yQPqcdX2UKGgGaAloD0MI3lSkwtgC+r+UhpRSlGgVSzJoFkdAp+wxWJaaC3V9lChoBmgJaA9DCAJLrmLxqxDAlIaUUpRoFUsyaBZHQKfr8x3V0911fZQoaAZoCWgPQwikqZ7MP3oHwJSGlFKUaBVLMmgWR0Cn67VIAfdRdX2UKGgGaAloD0MIDmjpCraxAcCUhpRSlGgVSzJoFkdAp+2c690zTHV9lChoBmgJaA9DCBSVDWsqiwzAlIaUUpRoFUsyaBZHQKftXlZowmF1fZQoaAZoCWgPQwhBSuza3m7qv5SGlFKUaBVLMmgWR0Cn7R9Dx9XtdX2UKGgGaAloD0MIZ/M4DOYv/b+UhpRSlGgVSzJoFkdAp+zgzLwF1XV9lChoBmgJaA9DCFkyx/KuOv+/lIaUUpRoFUsyaBZHQKfuu8yvcJt1fZQoaAZoCWgPQwhTXcDLDNv8v5SGlFKUaBVLMmgWR0Cn7n1KGtZFdX2UKGgGaAloD0MIXOffLvu18b+UhpRSlGgVSzJoFkdAp+4+GwiaAnV9lChoBmgJaA9DCBXFq6xtCu2/lIaUUpRoFUsyaBZHQKft/4ptrKx1fZQoaAZoCWgPQwhccXFUbuL3v5SGlFKUaBVLMmgWR0Cn79tY0VJudX2UKGgGaAloD0MI33AfuTUpDsCUhpRSlGgVSzJoFkdAp++cpobn5nV9lChoBmgJaA9DCDRN2H4ypgLAlIaUUpRoFUsyaBZHQKfvXXnQpnZ1fZQoaAZoCWgPQwhOYDqt26ABwJSGlFKUaBVLMmgWR0Cn7x7obGWEdX2UKGgGaAloD0MIhpM0f0wr+L+UhpRSlGgVSzJoFkdAp/D7bnHNo3V9lChoBmgJaA9DCEAwR4/fuw/AlIaUUpRoFUsyaBZHQKfwvLteD4B1fZQoaAZoCWgPQwjGbp9VZkr9v5SGlFKUaBVLMmgWR0Cn8H3WFvhqdX2UKGgGaAloD0MIVFOSdTi65b+UhpRSlGgVSzJoFkdAp/A/S8an8HV9lChoBmgJaA9DCMaLhSFy+v2/lIaUUpRoFUsyaBZHQKfyM717IDJ1fZQoaAZoCWgPQwgYIqev52sPwJSGlFKUaBVLMmgWR0Cn8fUzKs+3dX2UKGgGaAloD0MImS7E6o/wCsCUhpRSlGgVSzJoFkdAp/G2Ifr8i3V9lChoBmgJaA9DCLIrLSP1HgDAlIaUUpRoFUsyaBZHQKfxd36AOKB1fZQoaAZoCWgPQwgNbJVgcZgLwJSGlFKUaBVLMmgWR0Cn820vf0mMdX2UKGgGaAloD0MI5Nak2xL587+UhpRSlGgVSzJoFkdAp/Mux0MgEHV9lChoBmgJaA9DCEsd5PVgUgLAlIaUUpRoFUsyaBZHQKfy75yEL6V1fZQoaAZoCWgPQwgaMEj6tJoVwJSGlFKUaBVLMmgWR0Cn8rHiNsFddX2UKGgGaAloD0MIhZm2f2Xl9r+UhpRSlGgVSzJoFkdAp/SsLjPv8nV9lChoBmgJaA9DCCXLSSh9QQjAlIaUUpRoFUsyaBZHQKf0bm5lOGl1fZQoaAZoCWgPQwjZP08DBsnvv5SGlFKUaBVLMmgWR0Cn9C9IGyHEdX2UKGgGaAloD0MI6GwBofWw8b+UhpRSlGgVSzJoFkdAp/PwxSHdoHV9lChoBmgJaA9DCKQzMPKypvq/lIaUUpRoFUsyaBZHQKf1yIC2c8V1fZQoaAZoCWgPQwi3Yn/ZPXkDwJSGlFKUaBVLMmgWR0Cn9YoKc/dJdX2UKGgGaAloD0MIZtmTwOYc3L+UhpRSlGgVSzJoFkdAp/VLBXS0B3V9lChoBmgJaA9DCMvY0M3+wA/AlIaUUpRoFUsyaBZHQKf1DGI9C/p1fZQoaAZoCWgPQwjY1k//WRMFwJSGlFKUaBVLMmgWR0Cn9u0mUnogdX2UKGgGaAloD0MIhc/WwcFe7L+UhpRSlGgVSzJoFkdAp/aurZJ04nV9lChoBmgJaA9DCKZ8CKpGLwLAlIaUUpRoFUsyaBZHQKf2b2hZha11fZQoaAZoCWgPQwi1GachquAQwJSGlFKUaBVLMmgWR0Cn9jCtRvWIdX2UKGgGaAloD0MI8fPfg9fuDcCUhpRSlGgVSzJoFkdAp/gQ4uK4x3V9lChoBmgJaA9DCJhPVgxXh+u/lIaUUpRoFUsyaBZHQKf30nRb8m91fZQoaAZoCWgPQwgXZTbIJGP1v5SGlFKUaBVLMmgWR0Cn95NRNyo5dX2UKGgGaAloD0MIsd8T61Q5D8CUhpRSlGgVSzJoFkdAp/dUsUZeiXV9lChoBmgJaA9DCFiSPNf3wQbAlIaUUpRoFUsyaBZHQKf5N+y7f511fZQoaAZoCWgPQwhjCACOPXv8v5SGlFKUaBVLMmgWR0Cn+PlYlpoLdX2UKGgGaAloD0MIknajj/lgBcCUhpRSlGgVSzJoFkdAp/i6OJcgQ3V9lChoBmgJaA9DCG4164zvC/2/lIaUUpRoFUsyaBZHQKf4fGqgh8p1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3eda021293d1fbfd41ef485e93b05d0e54e8a396c1ccde00e9b519ee72a3f397
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ef7dc20cc68b163c10c40a8fd3efe87bf1ac86d128e0ce04f12d81f46c0267e
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff872be8f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff872be9940>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679698753795988262, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA/EbXPv7XFL2X0RI//EbXPv7XFL2X0RI//EbXPv7XFL2X0RI//EbXPv7XFL2X0RI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfXSTPy2FKD+d4vm9OjKiP5YA2D8vnjW+Xkk/PntDmz6Uu6q/J340v642lz76B48/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD8Rtc+/tcUvZfREj/06Ga7b3eUu2zm7zr8Rtc+/tcUvZfREj/06Ga7b3eUu2zm7zr8Rtc+/tcUvZfREj/06Ga7b3eUu2zm7zr8Rtc+/tcUvZfREj/06Ga7b3eUu2zm7zqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.42046344 -0.0363388 0.5735106 ]\n [ 0.42046344 -0.0363388 0.5735106 ]\n [ 0.42046344 -0.0363388 0.5735106 ]\n [ 0.42046344 -0.0363388 0.5735106 ]]", "desired_goal": "[[ 1.1519924 0.6582821 -0.12201426]\n [ 1.2671578 1.6875179 -0.17736124]\n [ 0.18680331 0.3032492 -1.3338494 ]\n [-0.70504993 0.29533905 1.1174309 ]]", "observation": "[[ 0.42046344 -0.0363388 0.5735106 -0.00352341 -0.00453084 0.00183029]\n [ 0.42046344 -0.0363388 0.5735106 -0.00352341 -0.00453084 0.00183029]\n [ 0.42046344 -0.0363388 0.5735106 -0.00352341 -0.00453084 0.00183029]\n [ 0.42046344 -0.0363388 0.5735106 -0.00352341 -0.00453084 0.00183029]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/Si7vP5pIz0TQ+Y9oCZ0Pc83373wJGg+TTHlPSIGeT3oOBU+PZTwvZ3qJD1XJEY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02284669 0.039896 0.11243262]\n [ 0.05960715 -0.10899317 0.2267034 ]\n [ 0.11191044 0.06079686 0.1457249 ]\n [-0.11747024 0.04026281 0.193498 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5GVNLPCV8r+UhpRSlIwBbJRLMowBdJRHQKfZtAgPmPp1fZQoaAZoCWgPQwiWWYRiK6jzv5SGlFKUaBVLMmgWR0Cn2XV7IDHPdX2UKGgGaAloD0MIlBPtKqR8CsCUhpRSlGgVSzJoFkdAp9k2UyHmBHV9lChoBmgJaA9DCAfvq3Khcvi/lIaUUpRoFUsyaBZHQKfY94TK1Xx1fZQoaAZoCWgPQwigpSvYRhwIwJSGlFKUaBVLMmgWR0Cn2tjHfdhzdX2UKGgGaAloD0MIl65gG/Ek9L+UhpRSlGgVSzJoFkdAp9qaQeV9nnV9lChoBmgJaA9DCPcEie3uAQ/AlIaUUpRoFUsyaBZHQKfaWwYcebN1fZQoaAZoCWgPQwjb+1QVGkj9v5SGlFKUaBVLMmgWR0Cn2hxbSqlxdX2UKGgGaAloD0MIamyvBb33DcCUhpRSlGgVSzJoFkdAp9vxkVeruXV9lChoBmgJaA9DCLyQDg9h/AHAlIaUUpRoFUsyaBZHQKfbsyqMm4R1fZQoaAZoCWgPQwhaLbDHRCoBwJSGlFKUaBVLMmgWR0Cn23PVmSQpdX2UKGgGaAloD0MIyXISSl8I6b+UhpRSlGgVSzJoFkdAp9s1YB/7SHV9lChoBmgJaA9DCFeyYyMQjwrAlIaUUpRoFUsyaBZHQKfdCeA/cFh1fZQoaAZoCWgPQwh+/KVFfZL/v5SGlFKUaBVLMmgWR0Cn3Mv8IiTudX2UKGgGaAloD0MIizcyj/xBD8CUhpRSlGgVSzJoFkdAp9yM/D+BH3V9lChoBmgJaA9DCBa+vtalxvq/lIaUUpRoFUsyaBZHQKfcTlpXZGt1fZQoaAZoCWgPQwgdIQN5dhkEwJSGlFKUaBVLMmgWR0Cn3l24/eLvdX2UKGgGaAloD0MIX3mQniJ3E8CUhpRSlGgVSzJoFkdAp94fLaEi+3V9lChoBmgJaA9DCC/h0Fs8fADAlIaUUpRoFUsyaBZHQKfd3/bTMJR1fZQoaAZoCWgPQwiZKhiV1En6v5SGlFKUaBVLMmgWR0Cn3aINd7fIdX2UKGgGaAloD0MIvalIhbGF5L+UhpRSlGgVSzJoFkdAp9+BMBZIQXV9lChoBmgJaA9DCERpb/CFqQLAlIaUUpRoFUsyaBZHQKffQqCHymR1fZQoaAZoCWgPQwjAeAYN/ZP4v5SGlFKUaBVLMmgWR0Cn3wNke6qbdX2UKGgGaAloD0MIQwBw7NlTAcCUhpRSlGgVSzJoFkdAp97EtAcDKnV9lChoBmgJaA9DCBfWjXdHxva/lIaUUpRoFUsyaBZHQKfgqDSPU8V1fZQoaAZoCWgPQwiES8ecZ2z1v5SGlFKUaBVLMmgWR0Cn4Gp/wy6+dX2UKGgGaAloD0MI64zvi0v1AMCUhpRSlGgVSzJoFkdAp+AslzEJjXV9lChoBmgJaA9DCEeP39v05/+/lIaUUpRoFUsyaBZHQKff7hTfixV1fZQoaAZoCWgPQwiughjo2hcFwJSGlFKUaBVLMmgWR0Cn4db2L5ymdX2UKGgGaAloD0MIZAPpYtNK6L+UhpRSlGgVSzJoFkdAp+GYqEvkBHV9lChoBmgJaA9DCMbE5uPaUP2/lIaUUpRoFUsyaBZHQKfhWZrHlwN1fZQoaAZoCWgPQwg+IqZEEm0XwJSGlFKUaBVLMmgWR0Cn4RsQVbiZdX2UKGgGaAloD0MIP3EA/b7fG8CUhpRSlGgVSzJoFkdAp+Mk8/2TPnV9lChoBmgJaA9DCPQWD+85sPO/lIaUUpRoFUsyaBZHQKfi5z3AVO91fZQoaAZoCWgPQwh7oYDtYJQTwJSGlFKUaBVLMmgWR0Cn4qlCb+cZdX2UKGgGaAloD0MI1hwgmKNH5b+UhpRSlGgVSzJoFkdAp+JrpzLfUHV9lChoBmgJaA9DCK8I/reSHe2/lIaUUpRoFUsyaBZHQKfk5jx0+1V1fZQoaAZoCWgPQwhbYI+JlGbpv5SGlFKUaBVLMmgWR0Cn5KiSRr8BdX2UKGgGaAloD0MIFop0P6fg8r+UhpRSlGgVSzJoFkdAp+RqXa8HwHV9lChoBmgJaA9DCOkpcoi4uQbAlIaUUpRoFUsyaBZHQKfkLIcR15l1fZQoaAZoCWgPQwg7b2OzI9Xxv5SGlFKUaBVLMmgWR0Cn5rFwtJ4CdX2UKGgGaAloD0MIl1RtN8E34r+UhpRSlGgVSzJoFkdAp+ZzoEB8yHV9lChoBmgJaA9DCE3WqIdoFAPAlIaUUpRoFUsyaBZHQKfmNVinYQJ1fZQoaAZoCWgPQwi7YkZ4e7ABwJSGlFKUaBVLMmgWR0Cn5fd8Rcu8dX2UKGgGaAloD0MIndfYJaq3AcCUhpRSlGgVSzJoFkdAp+if5ULlWHV9lChoBmgJaA9DCJ86Vik9U/u/lIaUUpRoFUsyaBZHQKfoYlD4QBh1fZQoaAZoCWgPQwjecvVjk/z1v5SGlFKUaBVLMmgWR0Cn6CQ/HHWCdX2UKGgGaAloD0MIEarU7IFW4L+UhpRSlGgVSzJoFkdAp+fmjynUD3V9lChoBmgJaA9DCPRPcLGiBu2/lIaUUpRoFUsyaBZHQKfqlMW43FV1fZQoaAZoCWgPQwje/8cJE8bnv5SGlFKUaBVLMmgWR0Cn6ld9lVcVdX2UKGgGaAloD0MI8rVnlgTo8r+UhpRSlGgVSzJoFkdAp+oZc3VConV9lChoBmgJaA9DCN0Gtd/aiQ3AlIaUUpRoFUsyaBZHQKfp29RJmNB1fZQoaAZoCWgPQwib/1cdOXILwJSGlFKUaBVLMmgWR0Cn7G7yQPqcdX2UKGgGaAloD0MI3lSkwtgC+r+UhpRSlGgVSzJoFkdAp+wxWJaaC3V9lChoBmgJaA9DCAJLrmLxqxDAlIaUUpRoFUsyaBZHQKfr8x3V0911fZQoaAZoCWgPQwikqZ7MP3oHwJSGlFKUaBVLMmgWR0Cn67VIAfdRdX2UKGgGaAloD0MIDmjpCraxAcCUhpRSlGgVSzJoFkdAp+2c690zTHV9lChoBmgJaA9DCBSVDWsqiwzAlIaUUpRoFUsyaBZHQKftXlZowmF1fZQoaAZoCWgPQwhBSuza3m7qv5SGlFKUaBVLMmgWR0Cn7R9Dx9XtdX2UKGgGaAloD0MIZ/M4DOYv/b+UhpRSlGgVSzJoFkdAp+zgzLwF1XV9lChoBmgJaA9DCFkyx/KuOv+/lIaUUpRoFUsyaBZHQKfuu8yvcJt1fZQoaAZoCWgPQwhTXcDLDNv8v5SGlFKUaBVLMmgWR0Cn7n1KGtZFdX2UKGgGaAloD0MIXOffLvu18b+UhpRSlGgVSzJoFkdAp+4+GwiaAnV9lChoBmgJaA9DCBXFq6xtCu2/lIaUUpRoFUsyaBZHQKft/4ptrKx1fZQoaAZoCWgPQwhccXFUbuL3v5SGlFKUaBVLMmgWR0Cn79tY0VJudX2UKGgGaAloD0MI33AfuTUpDsCUhpRSlGgVSzJoFkdAp++cpobn5nV9lChoBmgJaA9DCDRN2H4ypgLAlIaUUpRoFUsyaBZHQKfvXXnQpnZ1fZQoaAZoCWgPQwhOYDqt26ABwJSGlFKUaBVLMmgWR0Cn7x7obGWEdX2UKGgGaAloD0MIhpM0f0wr+L+UhpRSlGgVSzJoFkdAp/D7bnHNo3V9lChoBmgJaA9DCEAwR4/fuw/AlIaUUpRoFUsyaBZHQKfwvLteD4B1fZQoaAZoCWgPQwjGbp9VZkr9v5SGlFKUaBVLMmgWR0Cn8H3WFvhqdX2UKGgGaAloD0MIVFOSdTi65b+UhpRSlGgVSzJoFkdAp/A/S8an8HV9lChoBmgJaA9DCMaLhSFy+v2/lIaUUpRoFUsyaBZHQKfyM717IDJ1fZQoaAZoCWgPQwgYIqev52sPwJSGlFKUaBVLMmgWR0Cn8fUzKs+3dX2UKGgGaAloD0MImS7E6o/wCsCUhpRSlGgVSzJoFkdAp/G2Ifr8i3V9lChoBmgJaA9DCLIrLSP1HgDAlIaUUpRoFUsyaBZHQKfxd36AOKB1fZQoaAZoCWgPQwgNbJVgcZgLwJSGlFKUaBVLMmgWR0Cn820vf0mMdX2UKGgGaAloD0MI5Nak2xL587+UhpRSlGgVSzJoFkdAp/Mux0MgEHV9lChoBmgJaA9DCEsd5PVgUgLAlIaUUpRoFUsyaBZHQKfy75yEL6V1fZQoaAZoCWgPQwgaMEj6tJoVwJSGlFKUaBVLMmgWR0Cn8rHiNsFddX2UKGgGaAloD0MIhZm2f2Xl9r+UhpRSlGgVSzJoFkdAp/SsLjPv8nV9lChoBmgJaA9DCCXLSSh9QQjAlIaUUpRoFUsyaBZHQKf0bm5lOGl1fZQoaAZoCWgPQwjZP08DBsnvv5SGlFKUaBVLMmgWR0Cn9C9IGyHEdX2UKGgGaAloD0MI6GwBofWw8b+UhpRSlGgVSzJoFkdAp/PwxSHdoHV9lChoBmgJaA9DCKQzMPKypvq/lIaUUpRoFUsyaBZHQKf1yIC2c8V1fZQoaAZoCWgPQwi3Yn/ZPXkDwJSGlFKUaBVLMmgWR0Cn9YoKc/dJdX2UKGgGaAloD0MIZtmTwOYc3L+UhpRSlGgVSzJoFkdAp/VLBXS0B3V9lChoBmgJaA9DCMvY0M3+wA/AlIaUUpRoFUsyaBZHQKf1DGI9C/p1fZQoaAZoCWgPQwjY1k//WRMFwJSGlFKUaBVLMmgWR0Cn9u0mUnogdX2UKGgGaAloD0MIhc/WwcFe7L+UhpRSlGgVSzJoFkdAp/aurZJ04nV9lChoBmgJaA9DCKZ8CKpGLwLAlIaUUpRoFUsyaBZHQKf2b2hZha11fZQoaAZoCWgPQwi1GachquAQwJSGlFKUaBVLMmgWR0Cn9jCtRvWIdX2UKGgGaAloD0MI8fPfg9fuDcCUhpRSlGgVSzJoFkdAp/gQ4uK4x3V9lChoBmgJaA9DCJhPVgxXh+u/lIaUUpRoFUsyaBZHQKf30nRb8m91fZQoaAZoCWgPQwgXZTbIJGP1v5SGlFKUaBVLMmgWR0Cn95NRNyo5dX2UKGgGaAloD0MIsd8T61Q5D8CUhpRSlGgVSzJoFkdAp/dUsUZeiXV9lChoBmgJaA9DCFiSPNf3wQbAlIaUUpRoFUsyaBZHQKf5N+y7f511fZQoaAZoCWgPQwhjCACOPXv8v5SGlFKUaBVLMmgWR0Cn+PlYlpoLdX2UKGgGaAloD0MIknajj/lgBcCUhpRSlGgVSzJoFkdAp/i6OJcgQ3V9lChoBmgJaA9DCG4164zvC/2/lIaUUpRoFUsyaBZHQKf4fGqgh8p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (296 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.096861666254699, "std_reward": 0.9305389482419713, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-24T23:52:50.258237"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6630010eedfba79a091a4b7ac7276280ae354fff566807036483edfc39cbe577
|
3 |
+
size 3056
|