Jr23xd23 commited on
Commit
6fa5ed4
ยท
verified ยท
1 Parent(s): 7beef95

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -7
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
- license: apache-2.0
 
3
  tags:
4
  - llama
5
  - text-generation
@@ -9,7 +10,9 @@ tags:
9
  - fine-tuned
10
  datasets:
11
  - Jr23xd23/Arabic_LLaMA_Math_Dataset
 
12
  base_model: meta-llama/Llama-3.2-3B-Instruct
 
13
  inference: true
14
  ---
15
 
@@ -21,7 +24,7 @@ inference: true
21
 
22
  ## Model Details
23
 
24
- - **Model Type**: Transformer-based language model fine-tuned for text generation.
25
  - **Languages**: Arabic
26
  - **Base Model**: [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)
27
  - **Dataset**: [Arabic LLaMA Math Dataset](https://github.com/jaberjaber23/Arabic-LLaMA-Math-Dataset)
@@ -31,6 +34,7 @@ inference: true
31
  ## Training Data
32
 
33
  The model was fine-tuned on the **Arabic LLaMA Math Dataset**, which consists of 12,496 examples covering various mathematical topics, such as:
 
34
  - Basic Arithmetic
35
  - Algebra
36
  - Geometry
@@ -38,12 +42,13 @@ The model was fine-tuned on the **Arabic LLaMA Math Dataset**, which consists of
38
  - Combinatorics
39
 
40
  Each example in the dataset includes:
41
- - **Instruction**: The problem statement in Arabic.
42
- - **Solution**: The solution to the problem in Arabic.
43
 
44
  ## Intended Use
45
 
46
  ### Primary Use Cases:
 
47
  - Solving mathematical problems in Arabic
48
  - Educational applications
49
  - Tutoring systems for Arabic-speaking students
@@ -51,7 +56,7 @@ Each example in the dataset includes:
51
 
52
  ### How to Use
53
 
54
- You can use the model in Python with the Hugging Face `transformers` library:
55
 
56
  ```python
57
  from transformers import AutoModelForCausalLM, AutoTokenizer
@@ -60,7 +65,36 @@ tokenizer = AutoTokenizer.from_pretrained("Jr23xd23/Math_Arabic_Llama-3.2-3B-Ins
60
  model = AutoModelForCausalLM.from_pretrained("Jr23xd23/Math_Arabic_Llama-3.2-3B-Instruct")
61
 
62
  # Example: Solving a math problem in Arabic
63
- input_text = "ู…ุง ู‡ูˆ ู…ุฌู…ูˆุน ุงู„ุฒูˆุงูŠุง ููŠ ู…ุซู„ุซุŸ" # What is the sum of angles in a triangle?
64
  inputs = tokenizer(input_text, return_tensors="pt")
65
- output = model.generate(**inputs)
66
  print(tokenizer.decode(output[0], skip_special_tokens=True))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - ar
4
  tags:
5
  - llama
6
  - text-generation
 
10
  - fine-tuned
11
  datasets:
12
  - Jr23xd23/Arabic_LLaMA_Math_Dataset
13
+ license: apache-2.0
14
  base_model: meta-llama/Llama-3.2-3B-Instruct
15
+ pipeline_tag: text-generation
16
  inference: true
17
  ---
18
 
 
24
 
25
  ## Model Details
26
 
27
+ - **Model Type**: Transformer-based language model fine-tuned for text generation
28
  - **Languages**: Arabic
29
  - **Base Model**: [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)
30
  - **Dataset**: [Arabic LLaMA Math Dataset](https://github.com/jaberjaber23/Arabic-LLaMA-Math-Dataset)
 
34
  ## Training Data
35
 
36
  The model was fine-tuned on the **Arabic LLaMA Math Dataset**, which consists of 12,496 examples covering various mathematical topics, such as:
37
+
38
  - Basic Arithmetic
39
  - Algebra
40
  - Geometry
 
42
  - Combinatorics
43
 
44
  Each example in the dataset includes:
45
+ - **Instruction**: The problem statement in Arabic
46
+ - **Solution**: The solution to the problem in Arabic
47
 
48
  ## Intended Use
49
 
50
  ### Primary Use Cases:
51
+
52
  - Solving mathematical problems in Arabic
53
  - Educational applications
54
  - Tutoring systems for Arabic-speaking students
 
56
 
57
  ### How to Use
58
 
59
+ You can use the model in Python with the Hugging Face transformers library:
60
 
61
  ```python
62
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
65
  model = AutoModelForCausalLM.from_pretrained("Jr23xd23/Math_Arabic_Llama-3.2-3B-Instruct")
66
 
67
  # Example: Solving a math problem in Arabic
68
+ input_text = "ู…ุง ู‡ูˆ ู…ุฌู…ูˆุน ุงู„ุฒูˆุงูŠุง ููŠ ู…ุซู„ุซุŸ" # What is the sum of angles in a triangle?
69
  inputs = tokenizer(input_text, return_tensors="pt")
70
+ output = model.generate(**inputs, max_length=100)
71
  print(tokenizer.decode(output[0], skip_special_tokens=True))
72
+ ```
73
+
74
+ ## Limitations
75
+
76
+ - The model is not designed for non-mathematical language tasks.
77
+ - Performance may degrade when applied to highly complex mathematical problems beyond the scope of the training dataset.
78
+ - The model's outputs should be verified for critical applications.
79
+
80
+ ## License
81
+
82
+ This model is licensed under the **Apache 2.0 License**.
83
+
84
+ ## Citation
85
+
86
+ If you use this model in your research or projects, please cite it as follows:
87
+
88
+ ```bibtex
89
+ @model{Math_Arabic_Llama_3.2_3B_Instruct,
90
+ title={Math_Arabic_Llama-3.2-3B-Instruct},
91
+ author={Jr23xd23},
92
+ year={2024},
93
+ publisher={Hugging Face},
94
+ url={https://huggingface.co/Jr23xd23/Math_Arabic_Llama-3.2-3B-Instruct},
95
+ }
96
+ ```
97
+
98
+ ## Acknowledgements
99
+
100
+ Special thanks to the creators of the **Arabic LLaMA Math Dataset** for providing a rich resource for fine-tuning the model.