File size: 18,162 Bytes
eacb34e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoConfig, AutoTokenizer, LlamaForCausalLM
from transformers.models.llama.modeling_llama import LlamaModel, LlamaConfig
from transformers.modeling_outputs import BaseModelOutputWithPast
# Custom Modules
class AdaptiveRMSNorm(nn.Module):
"""
Adaptive RMSNorm layer where the scaling parameter adapts based on input.
"""
def __init__(self, normalized_shape, adaptive_dim, eps=1e-6):
super(AdaptiveRMSNorm, self).__init__()
self.normalized_shape = normalized_shape
self.eps = eps
# Standard RMSNorm weight parameter
self.weight = nn.Parameter(torch.ones(normalized_shape))
# Adaptive scaling parameter
self.fc_gamma = nn.Linear(adaptive_dim, normalized_shape)
def forward(self, x, adapt_input):
# Compute adaptive scaling factor gamma
gamma = self.fc_gamma(adapt_input).unsqueeze(1) # Shape: [batch_size, 1, hidden_size]
# Compute RMSNorm
norm_x = x / x.norm(dim=-1, keepdim=True).clamp(min=self.eps)
# Apply adaptive scaling
return self.weight * norm_x * gamma
class TokenMixing(nn.Module):
"""
Token Mixing layer that performs depthwise convolution across the sequence dimension.
"""
def __init__(self, hidden_size):
super(TokenMixing, self).__init__()
self.token_mixing = nn.Conv1d(
in_channels=hidden_size,
out_channels=hidden_size,
kernel_size=3,
padding=1,
groups=hidden_size # Depthwise convolution
)
def forward(self, x):
# x shape: [batch_size, seq_length, hidden_size]
x = x.transpose(1, 2) # Shape: [batch_size, hidden_size, seq_length]
x = self.token_mixing(x)
x = x.transpose(1, 2) # Shape back to [batch_size, seq_length, hidden_size]
return x
class SEBlock(nn.Module):
"""
Squeeze-and-Excitation block that adaptively recalibrates channel-wise features.
"""
def __init__(self, hidden_size, reduction=16):
super(SEBlock, self).__init__()
self.fc = nn.Sequential(
nn.Linear(hidden_size, hidden_size // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(hidden_size // reduction, hidden_size, bias=False),
nn.Sigmoid()
)
def forward(self, x):
# x shape: [batch_size, seq_length, hidden_size]
y = x.mean(dim=1) # Global average pooling over sequence length
y = self.fc(y) # Squeeze and Excitation
y = y.unsqueeze(1) # Shape: [batch_size, 1, hidden_size]
return x * y # Scale the original input
class DifferentialSelfAttention(nn.Module):
"""
Self-Attention layer with Differential Attention Mechanism.
Includes support for past_key_value and attention_mask handling.
"""
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size # e.g., 1024
self.num_heads = config.num_attention_heads # e.g., 4
self.head_dim = self.hidden_size // self.num_heads # e.g., 256
assert self.head_dim * self.num_heads == self.hidden_size, \
"hidden_size must be divisible by num_attention_heads"
self.scaling = self.head_dim ** -0.5
# Linear layers for Q, K, V projections
# Adjust k_proj and v_proj to match the pre-trained model's dimensions
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size) # [1024, 1024]
self.k_proj = nn.Linear(self.hidden_size, self.hidden_size // 8) # [1024, 256]
self.v_proj = nn.Linear(self.hidden_size, self.hidden_size // 8) # [1024, 256]
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size) # [1024, 1024]
# Learnable parameters for lambda computation
self.lambda_q1 = nn.Parameter(torch.randn(self.head_dim) * 0.1)
self.lambda_k1 = nn.Parameter(torch.randn(self.head_dim) * 0.1)
self.lambda_q2 = nn.Parameter(torch.randn(self.head_dim) * 0.1)
self.lambda_k2 = nn.Parameter(torch.randn(self.head_dim) * 0.1)
self.lambda_init = nn.Parameter(torch.tensor(0.5)) # Initial value as per the paper
# Layer normalization
self.sub_layer_norm = nn.LayerNorm(self.hidden_size)
def forward(
self,
hidden_states,
attention_mask=None,
position_ids=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
**kwargs,
):
batch_size, seq_length, _ = hidden_states.size()
# Linear projections
query_states = self.q_proj(hidden_states) * self.scaling # Shape: [batch_size, seq_length, hidden_size]
key_states = self.k_proj(hidden_states) # Shape: [batch_size, seq_length, hidden_size // 4]
value_states = self.v_proj(hidden_states) # Shape: [batch_size, seq_length, hidden_size // 4]
# Reshape and split into multiple heads
# Query states have shape: [batch_size, num_heads, seq_length, head_dim]
query_states = query_states.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
# Key and value states have shape: [batch_size, num_heads, seq_length, key_head_dim]
key_head_dim = key_states.size(-1) // self.num_heads # Should be 256 // num_heads
key_states = key_states.view(batch_size, seq_length, self.num_heads, key_head_dim).transpose(1, 2)
value_states = value_states.view(batch_size, seq_length, self.num_heads, key_head_dim).transpose(1, 2)
# Handle past key values for caching
if past_key_value is not None:
# past_key_value[0] and [1] have shape (batch_size, num_heads, seq_len_prev, key_head_dim)
key_states = torch.cat([past_key_value[0], key_states], dim=2) # Concat on seq_length dimension
value_states = torch.cat([past_key_value[1], value_states], dim=2)
if use_cache:
present_key_value = (key_states, value_states)
else:
present_key_value = None
# Update sequence length after concatenation
kv_seq_length = key_states.size(2)
# Split Q and K into two groups for differential attention
q1, q2 = torch.chunk(query_states, 2, dim=-1) # Each has shape: [batch_size, num_heads, seq_length, head_dim/2]
k1, k2 = torch.chunk(key_states, 2, dim=-1) # Adjusted for key_states
# Compute attention scores
attn_scores1 = torch.matmul(q1, k1.transpose(-2, -1)) # [batch_size, num_heads, seq_length, kv_seq_length]
attn_scores2 = torch.matmul(q2, k2.transpose(-2, -1))
# Apply attention mask if provided
if attention_mask is not None:
# attention_mask should be of shape [batch_size, 1, seq_length, kv_seq_length]
if attention_mask.dim() == 2:
attention_mask = attention_mask[:, None, None, :] # Expand to [batch_size, 1, 1, kv_seq_length]
elif attention_mask.dim() == 3:
attention_mask = attention_mask[:, None, :, :]
attention_mask = attention_mask.to(dtype=attn_scores1.dtype) # Ensure dtype matches
attn_scores1 += attention_mask
attn_scores2 += attention_mask
# Compute attention probabilities
attn_probs1 = nn.functional.softmax(attn_scores1, dim=-1, dtype=torch.float32).to(attn_scores1.dtype)
attn_probs2 = nn.functional.softmax(attn_scores2, dim=-1, dtype=torch.float32).to(attn_scores2.dtype)
# Compute lambda as per the DIFF Transformer paper
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1))
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2))
lambda_full = lambda_1 - lambda_2 + self.lambda_init
# Compute differential attention
attn_probs = attn_probs1 - lambda_full * attn_probs2
# Compute attention output
attn_output = torch.matmul(attn_probs, value_states) # [batch_size, num_heads, seq_length, key_head_dim]
# Reshape and project output
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_length, self.hidden_size)
attn_output = self.o_proj(attn_output)
# Apply layer normalization
attn_output = self.sub_layer_norm(attn_output)
if output_attentions:
# Return attention probabilities if required
attn_probs_return = attn_probs
else:
attn_probs_return = None
return attn_output, present_key_value, attn_probs_return
# Modified Decoder Layer
class ModifiedLlamaDecoderLayer(nn.Module):
"""
Modified Llama Decoder Layer incorporating DifferentialSelfAttention,
AdaptiveRMSNorm, TokenMixing, and SEBlock.
"""
def __init__(self, original_layer, config):
super().__init__()
self.hidden_size = config.hidden_size
self.adaptive_dim = config.hidden_size # Using hidden_size for adapt_input
# Replace the self-attention layer with DifferentialSelfAttention
self.self_attn = DifferentialSelfAttention(config)
# Copy the original MLP layer
self.mlp = original_layer.mlp
# Replace RMSNorm layers with AdaptiveRMSNorm
self.input_layernorm = AdaptiveRMSNorm(
self.hidden_size, self.adaptive_dim, eps=config.rms_norm_eps
)
self.post_attention_layernorm = AdaptiveRMSNorm(
self.hidden_size, self.adaptive_dim, eps=config.rms_norm_eps
)
# Add Token Mixing Layer
self.token_mixing = TokenMixing(self.hidden_size)
# Add SE Block
self.se_block = SEBlock(self.hidden_size, reduction=16)
def forward(
self,
hidden_states,
attention_mask=None,
position_ids=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
**kwargs,
):
# Compute adaptation input for AdaptiveRMSNorm
adapt_input = hidden_states.mean(dim=1) # Shape: [batch_size, hidden_size]
residual = hidden_states
# Input layer normalization with adaptive RMSNorm
hidden_states = self.input_layernorm(hidden_states, adapt_input)
# Self-attention with differential attention mechanism
attn_output, present_key_value, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
**kwargs,
)
hidden_states = residual + attn_output
# Token Mixing
token_mixed = self.token_mixing(hidden_states)
hidden_states = hidden_states + token_mixed
# Post-attention layer normalization with adaptive RMSNorm
hidden_states = self.post_attention_layernorm(hidden_states, adapt_input)
# MLP
residual = hidden_states
hidden_states = self.mlp(hidden_states)
# SE Block
hidden_states = self.se_block(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if use_cache:
outputs += (present_key_value,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Modified Model
class ModifiedLlamaModel(LlamaModel):
def __init__(self, config):
super().__init__(config)
# Replace the decoder layers with modified layers
self.layers = nn.ModuleList([
ModifiedLlamaDecoderLayer(layer, config)
for layer in self.layers
])
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
**kwargs, # Capture any additional keyword arguments
):
# Ensure default values are set
output_attentions = output_attentions if output_attentions is not None else self.config.use_cache
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Process inputs
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time.")
elif input_ids is not None:
input_shape = input_ids.size()
batch_size, seq_length = input_shape
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size, seq_length = input_shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
# Initialize past_key_values if not provided
if past_key_values is None:
past_key_values = [None] * len(self.layers)
# Embed tokens
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
# Attention mask processing
if attention_mask is not None:
if attention_mask.dim() == 2:
attention_mask = attention_mask[:, None, None, :]
elif attention_mask.dim() == 3:
attention_mask = attention_mask[:, None, :, :]
attention_mask = attention_mask.to(dtype=hidden_states.dtype)
attention_mask = (1.0 - attention_mask) * torch.finfo(hidden_states.dtype).min
# Main loop over layers
next_decoder_cache = [] if use_cache else None
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for idx, (decoder_layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# Forward pass through the layer
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=layer_past,
use_cache=use_cache,
output_attentions=output_attentions,
**kwargs, # Pass any additional keyword arguments
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache.append(layer_outputs[1])
if output_attentions:
all_attentions = all_attentions + (layer_outputs[-1],)
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
outputs = (hidden_states,)
if use_cache:
outputs += (next_decoder_cache,)
if output_hidden_states:
outputs += (all_hidden_states,)
if output_attentions:
outputs += (all_attentions,)
return outputs
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache if use_cache else None,
hidden_states=all_hidden_states if output_hidden_states else None,
attentions=all_attentions if output_attentions else None,
)
# Load the pre-trained model
# Load the configuration from the pre-trained model
config = AutoConfig.from_pretrained('Josephgflowers/TinyLlama-v1.1-Cinders-World')
# Initialize the modified model
modified_model = LlamaForCausalLM(config)
modified_model.model = ModifiedLlamaModel(config)
# Load the pre-trained weights
pretrained_model = LlamaForCausalLM.from_pretrained('Josephgflowers/TinyLlama-v1.1-Cinders-World')
modified_model.load_state_dict(pretrained_model.state_dict(), strict=False)
# Save the model and tokenizer
output_dir = "./BSC-LT-salamandra-2b-instruct-saved_model"
modified_model.save_pretrained(output_dir)
tokenizer = AutoTokenizer.from_pretrained('Josephgflowers/TinyLlama-v1.1-Cinders-World', legacy=False)
tokenizer.save_pretrained(output_dir)
print(f"Model and tokenizer saved to {output_dir}")
# Example Usage
import time
def chat_with_model(prompt_text, stop_token, model, tokenizer):
# Encode the prompt text
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
start_time = time.time()
encoded_prompt = tokenizer.encode(prompt_text, add_special_tokens=False, return_tensors="pt").to(device)
# Generate response
output_sequences = model.generate(
input_ids=encoded_prompt,
max_new_tokens=512,
temperature=0.2,
repetition_penalty=1.2,
top_k=30,
top_p=0.9,
do_sample=True,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
use_cache=True, # Ensure use_cache is True for generation
)
# Decode the generated sequence
generated_sequence = output_sequences[0].tolist()
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)
num_tokens = output_sequences.shape[-1]
response_text = text[len(prompt_text):].strip()
end_time = time.time()
total_time = end_time - start_time
print(f"Total time: {total_time:.3f} seconds")
tokens_per_second = num_tokens / total_time
print(f"Tokens per second: {tokens_per_second:.3f}")
return response_text
# Example usage
input_text = "Hello, how are you?"
stop_token = tokenizer.eos_token_id # Assuming EOS token as the stop token
response = chat_with_model(input_text, stop_token, modified_model, tokenizer)
print("Model response:", response)
|