--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: roberta-base-finetuned-mrpc results: [] --- # roberta-base-finetuned-mrpc This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2891 - Accuracy: 0.8925 - F1: 0.9228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - total_eval_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5998 | 1.0 | 57 | 0.5425 | 0.74 | 0.8349 | | 0.5058 | 2.0 | 114 | 0.3020 | 0.875 | 0.9084 | | 0.3316 | 3.0 | 171 | 0.2891 | 0.8925 | 0.9228 | | 0.1617 | 4.0 | 228 | 0.2937 | 0.8825 | 0.9138 | | 0.3161 | 5.0 | 285 | 0.3193 | 0.8875 | 0.9171 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.3.2 - Tokenizers 0.12.1