--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 base_model: bert-base-uncased model-index: - name: bert-base-uncased-mrpc results: - task: type: text-classification name: Text Classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - type: accuracy value: 0.8578431372549019 name: Accuracy - type: f1 value: 0.9023569023569024 name: F1 - task: type: natural-language-inference name: Natural Language Inference dataset: name: glue type: glue config: mrpc split: validation metrics: - type: accuracy value: 0.8578431372549019 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWViZGIwMDMxMjA0ZTMwMWY3ZWU4YzA4ZjNjOWMyM2I0NGE2ZDZkMjg3MDdiZDUwYjEzNjMwYzZiODBhMzBiYyIsInZlcnNpb24iOjF9.8xsat2msiKS4S7KplRkr9xaLWCwMSbUNEXxZ3FgFXfIB6DhXWLoDdoc5X6GNux2ipDEdgHjqI8FMzAJURaD0DQ - type: precision value: 0.8507936507936508 name: Precision verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGE4ZTkyMzc1NTA4MjQxZGU4NjY5NmMyODI3ZWI0NGU4YWUzNmI3YzFhOTU0MDRkZWIzNzkxNTU0Y2ZhYTFmYiIsInZlcnNpb24iOjF9.f7odSB_ZEGkjTbewzM9SW7G5C324Hpuo6Z01uOr7OENrLPDC3z0OwgtoQmNj7pHVcU0fFp9FyRRiTowE6U4SAg - type: recall value: 0.9605734767025089 name: Recall verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWVjYjhhNzJlYjdlMWI3Y2RmODkzZDQyYTBhMzdkY2NlNGE4OWM3YzY5MjBiZjMwNWY3ZmIwODk5ZDFkMjI4YSIsInZlcnNpb24iOjF9.yPZxpm9l7ctYxLEBuN0lOukQnT8ETLsBA4EzuqY5EJDuK6FZCqKeb1TKZ_qtthSQpI4n1366LzqSXeU8nZ3tBw - type: auc value: 0.8931260592926008 name: AUC verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjkwN2RmOTlmZDRlZTQ3ZTE1NjBjNTQxMDNkOTExMzQ5MjkyNjY1ZDFjZmQ4MDE0NmZlNDBhMjQzMTRhN2IxZCIsInZlcnNpb24iOjF9.e_gccDrQXc6s8fASle5wnZWc02ihuqBdicoDvehQO79nt-YHdm1oK11llTiUULReIOxTsOmFKCattvztyqOUCQ - type: f1 value: 0.9023569023569024 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWNiOTUyMzEzMTRkNzBmOTdiMTNhOGQ0NzgyZjFiNjc2NmE1Y2FlOWM0NzdmNGM5ZGNmZTUyMzljZGRiZjNhOSIsInZlcnNpb24iOjF9.rxUf2PMqTz3N-tvfIo6L19RKTzmIjYRoxm1BEzrzNX1w-FATF69X2WZlqjAyB2xhMrSikvmsh7QryYmZn-P6AA - type: loss value: 0.5572634935379028 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWIyMzZmMGYwMjEyMGFmOGRjNGE3YjQ5MmU5NGZjYmJjZGFiNTA4Mzk0MTAxNDQyYTk5YzE2OTA5YjlmODgzMCIsInZlcnNpb24iOjF9.bgoIjSqw70DaRXJ9LL3_dP33C0WPAZq5uMlencN-wOpjNes2v0VcCW1felmd_0JRwSbWI7v1eP2YYPiQg-a0AQ --- # bert-base-uncased-mrpc This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5572 - Accuracy: 0.8578 - F1: 0.9024 - Combined Score: 0.8801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | No log | 1.0 | 230 | 0.4111 | 0.8088 | 0.8704 | 0.8396 | | No log | 2.0 | 460 | 0.3762 | 0.8480 | 0.8942 | 0.8711 | | 0.4287 | 3.0 | 690 | 0.5572 | 0.8578 | 0.9024 | 0.8801 | | 0.4287 | 4.0 | 920 | 0.6087 | 0.8554 | 0.8977 | 0.8766 | | 0.1172 | 5.0 | 1150 | 0.6524 | 0.8456 | 0.8901 | 0.8678 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1