File size: 4,494 Bytes
0804d9d 65cd154 0804d9d 7517a4d 0804d9d 8adcaff 0804d9d 65cd154 0804d9d 8adcaff 65cd154 8adcaff 65cd154 8adcaff 47ac4af 8adcaff 47ac4af 8adcaff 47ac4af 8adcaff 47ac4af 8adcaff 47ac4af 8adcaff 47ac4af 8adcaff 47ac4af 8adcaff 47ac4af 8adcaff 47ac4af 8adcaff 47ac4af 8adcaff 47ac4af 8adcaff 47ac4af 8adcaff 47ac4af 8adcaff 0804d9d 65cd154 0804d9d 65cd154 0804d9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
base_model: bert-base-uncased
model-index:
- name: bert-base-uncased-mrpc
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- type: accuracy
value: 0.8578431372549019
name: Accuracy
- type: f1
value: 0.9023569023569024
name: F1
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: mrpc
split: validation
metrics:
- type: accuracy
value: 0.8578431372549019
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWViZGIwMDMxMjA0ZTMwMWY3ZWU4YzA4ZjNjOWMyM2I0NGE2ZDZkMjg3MDdiZDUwYjEzNjMwYzZiODBhMzBiYyIsInZlcnNpb24iOjF9.8xsat2msiKS4S7KplRkr9xaLWCwMSbUNEXxZ3FgFXfIB6DhXWLoDdoc5X6GNux2ipDEdgHjqI8FMzAJURaD0DQ
- type: precision
value: 0.8507936507936508
name: Precision
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGE4ZTkyMzc1NTA4MjQxZGU4NjY5NmMyODI3ZWI0NGU4YWUzNmI3YzFhOTU0MDRkZWIzNzkxNTU0Y2ZhYTFmYiIsInZlcnNpb24iOjF9.f7odSB_ZEGkjTbewzM9SW7G5C324Hpuo6Z01uOr7OENrLPDC3z0OwgtoQmNj7pHVcU0fFp9FyRRiTowE6U4SAg
- type: recall
value: 0.9605734767025089
name: Recall
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWVjYjhhNzJlYjdlMWI3Y2RmODkzZDQyYTBhMzdkY2NlNGE4OWM3YzY5MjBiZjMwNWY3ZmIwODk5ZDFkMjI4YSIsInZlcnNpb24iOjF9.yPZxpm9l7ctYxLEBuN0lOukQnT8ETLsBA4EzuqY5EJDuK6FZCqKeb1TKZ_qtthSQpI4n1366LzqSXeU8nZ3tBw
- type: auc
value: 0.8931260592926008
name: AUC
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjkwN2RmOTlmZDRlZTQ3ZTE1NjBjNTQxMDNkOTExMzQ5MjkyNjY1ZDFjZmQ4MDE0NmZlNDBhMjQzMTRhN2IxZCIsInZlcnNpb24iOjF9.e_gccDrQXc6s8fASle5wnZWc02ihuqBdicoDvehQO79nt-YHdm1oK11llTiUULReIOxTsOmFKCattvztyqOUCQ
- type: f1
value: 0.9023569023569024
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWNiOTUyMzEzMTRkNzBmOTdiMTNhOGQ0NzgyZjFiNjc2NmE1Y2FlOWM0NzdmNGM5ZGNmZTUyMzljZGRiZjNhOSIsInZlcnNpb24iOjF9.rxUf2PMqTz3N-tvfIo6L19RKTzmIjYRoxm1BEzrzNX1w-FATF69X2WZlqjAyB2xhMrSikvmsh7QryYmZn-P6AA
- type: loss
value: 0.5572634935379028
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWIyMzZmMGYwMjEyMGFmOGRjNGE3YjQ5MmU5NGZjYmJjZGFiNTA4Mzk0MTAxNDQyYTk5YzE2OTA5YjlmODgzMCIsInZlcnNpb24iOjF9.bgoIjSqw70DaRXJ9LL3_dP33C0WPAZq5uMlencN-wOpjNes2v0VcCW1felmd_0JRwSbWI7v1eP2YYPiQg-a0AQ
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-mrpc
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5572
- Accuracy: 0.8578
- F1: 0.9024
- Combined Score: 0.8801
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
| No log | 1.0 | 230 | 0.4111 | 0.8088 | 0.8704 | 0.8396 |
| No log | 2.0 | 460 | 0.3762 | 0.8480 | 0.8942 | 0.8711 |
| 0.4287 | 3.0 | 690 | 0.5572 | 0.8578 | 0.9024 | 0.8801 |
| 0.4287 | 4.0 | 920 | 0.6087 | 0.8554 | 0.8977 | 0.8766 |
| 0.1172 | 5.0 | 1150 | 0.6524 | 0.8456 | 0.8901 | 0.8678 |
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|