--- license: mit --- ## Finetuned Model For My Thesis: Design And Implementation Of An Adaptive Virtual Intelligent Teaching Assistant Based On Supervised Fine-tuning Of A Pre-trained Large Language Model ### Model Name: CodeOptimus - Adaptive Supervised Instruction Fine-tuning [Mistral 7B Instruct](https://mistral.ai/news/announcing-mistral-7b/) using qLora. ## Prerequisites For Reproduction 1. **GPU**: Requires powerful GPUs - I used 7 Nvidia A100s. 2. **Train Time**: 1 week. 3. **RAG Module**: Updates the knowledge base of the model in real-time with adaptive features learned from conversations with the model over time.. 4. **Python Packages**: Install requirements.txt. 5. **Dataset**: Download [code_instructions_122k_alpaca_style](https://huggingface.co/datasets/TokenBender/code_instructions_122k_alpaca_style) plus some custom curated dataset 6. **Mistra-7B-Instruct-v0.1**: Download [mistralai/Mistral-7B-Instruct-v0.1 ](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) pytorch bin weights 7. **Realistic 3D Intelligent Persona/Avatar (Optional)**: For this I'm using soulmachine's digital humans. ![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F6438a9027de34e8ea7e4b257%2FUJtAiKejhrmUPN5EiA59E.png)