--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: emotion_classification_v1.1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.575 - name: Precision type: precision value: 0.6064414347689876 - name: Recall type: recall value: 0.575 - name: F1 type: f1 value: 0.5730570699748332 --- # emotion_classification_v1.1 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2449 - Accuracy: 0.575 - Precision: 0.6064 - Recall: 0.575 - F1: 0.5731 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 40 | 1.8287 | 0.325 | 0.2995 | 0.325 | 0.2695 | | No log | 2.0 | 80 | 1.5621 | 0.475 | 0.4171 | 0.475 | 0.4104 | | No log | 3.0 | 120 | 1.4485 | 0.4188 | 0.3786 | 0.4188 | 0.3710 | | No log | 4.0 | 160 | 1.4040 | 0.4313 | 0.5179 | 0.4313 | 0.3963 | | No log | 5.0 | 200 | 1.3333 | 0.4938 | 0.5016 | 0.4938 | 0.4654 | | No log | 6.0 | 240 | 1.3076 | 0.4688 | 0.4698 | 0.4688 | 0.4437 | | No log | 7.0 | 280 | 1.3531 | 0.4813 | 0.5289 | 0.4813 | 0.4834 | | No log | 8.0 | 320 | 1.3118 | 0.4688 | 0.4606 | 0.4688 | 0.4619 | | No log | 9.0 | 360 | 1.3326 | 0.4938 | 0.5629 | 0.4938 | 0.4744 | | No log | 10.0 | 400 | 1.2693 | 0.4938 | 0.4825 | 0.4938 | 0.4777 | | No log | 11.0 | 440 | 1.2310 | 0.55 | 0.5747 | 0.55 | 0.5441 | | No log | 12.0 | 480 | 1.2673 | 0.5375 | 0.5418 | 0.5375 | 0.5316 | | 1.0804 | 13.0 | 520 | 1.3161 | 0.5125 | 0.5321 | 0.5125 | 0.5048 | | 1.0804 | 14.0 | 560 | 1.2517 | 0.55 | 0.5550 | 0.55 | 0.5430 | | 1.0804 | 15.0 | 600 | 1.3344 | 0.5 | 0.5023 | 0.5 | 0.4848 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1