File size: 18,671 Bytes
141d8b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa96c9deca0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa96c9ded30>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa96c9dedc0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa96c9dee50>",
"_build": "<function ActorCriticPolicy._build at 0x7fa96c9deee0>",
"forward": "<function ActorCriticPolicy.forward at 0x7fa96c9def70>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa96c9e2040>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fa96c9e20d0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa96c9e2160>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa96c9e21f0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa96c9e2280>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7fa96c9db4b0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVWgIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
"dtype": "float32",
"bounded_below": "[ True True True True True True True True]",
"bounded_above": "[ True True True True True True True True]",
"_shape": [
8
],
"low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
"low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVPwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc3RhcnSUSwCMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgVjAVzdGF0ZZR9lCiMA2tleZSMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbACQAAAAAAAAAAAICf5XKN7DKTmDdZTQotIHxHHahuyk5nO+GJphGKxas1v9eEd0G4AMIylRzWxMmzodHDYuqNHj4kVOgihRmvR0Se2XjsfpjkDBgLu3Y0xTSHiaz1NlKp9DyyoMCSSbo6tT51/s5EGTOW1Lvh5Kyrqf4dh2uxX+nHTQ34p6pAPdpLv3MIiMscQdPA/AXkT8nvgKsjd1LPTSczCPi7uErgWLVdSJrZb1x8Z2IfZ6eamvVoUaL4Nirf+atqvM+McX7hCkx92ZIWLHOj546boBNAv+9+JX/RmlaeUKKLhF2XnI75WjCOxCQZ8kcsH1O42WFLsSMPaLAdnznPu58PfNE+c3lKKtWwkInheEI+FezHc3kdcgqnkHDl/d/EsJ7PlUIF/Es9rwU3rrzrWtxoV2tyRkPe+e54WpHl2koxaCuDWCl9MAAVJMC4OnFPZRwQvLHO9sE2lf9jc493BQGqYz+tbvAnCpy28nhBYNkJ2CwlPLbWO+lYD43p3fRc6H46Iu4T3ER6mt2D52yk5aZhzYng7tkA+2E1Y6zR1f2dpEfyPoxf/qJejc23ECg+DisZEZ8Dz8b7Km4hZGv2LfPRCT20HGz2AnWOyjfg37Fs4etSjYfVQtawbegKHEq0N+wfD6TCbnvPcT/dKM3e8UTvbrZBn0/8LeKhR0V/qN0GyUPZx3+TsPNu3WbBPltAF4kaULM8bEeVsj1ZZOgB8c6ZPMiBSrCkXetIcSTqtepWGdA9fi4LYaZzx6xm+Z62BPY9cusjOivRTAq7nk0BOZxxk6jDQx6U9rDIEK2mYCwdzx1qnJ1kOyPjOFkmsDQ1D5OQepOiroUjgoS2dYC+qaA5qnMrpM/FbDopeUYCRRt1XP9/2AnNp4ovmBn/e+1Qzoqg7IpytEZlO07w3aMEfxE3yUiOe7aiMA4/ramPo6F3ZQKptugAc0Ozw0A0OM3uDhvLezal7Fxl+A8QoAQ2ybcvcWsb74M5/SN+0AMIu9vMYrC1rNyS8BoEgYnQkEyJXbaU8Q9tcpn+/p3obMkwcNfx6ZOzYBXhZQgw63ySYx1VYEi/o9f+G1n5oAvB1+X+xPjEmFei4IHNe14B11w2cUSZnvxm2ariciMXLDISho8egNoGZSXUcRt0yLgh8+gZ472KNyg68NmP6UCNnxvIdrebTsTh40ehfTS/uhi0QZIU7gfNpMgC07l5bKXLfpkUvhFaWRPwR5KSvE7Abk/y85bQPgWsvTESBwyRnZ8+TmykdMeyF6TJTB/6aqhkeCRMkX7ZimjY9KZx6bT779ZvxfS8+uwkRGpTuSBukgjxzipSwZL3e3McoCY9rlOLQ9V8KZSBGIaTE+S3w0dNp0p7RIxJ2vFRbIM9R2LPFltqJbBvuQyGcyAwk3mxG2VpiOTxfbLcMbnk0y7iGUmy6/Cxw336Dmp5gzJA+4lZJp1ojb94iVX199g/vxTCF6iiinv3txFcwrsooEEjOhU8g6T18wEIRzgKr1PBPfmm3T00XuHFe+2UJkbYf3q8SCaEkrnUbXLI2x578yBvKJFwrUnetk/Uc6jcv/MaoPjuQmjzNPBhy7JTpPuqRYWJOlaGLvp1L5nmUDoyXTeylrkl+fOrlXUCTOaIQNtOb1za+Bty/a+jIHTVUvrC/QLm9ozZpdWXRK7bGA58akXDZS0XJzgEREgog88QOVEwf1om7911ei0RkBbPb+nL8c7OtTxHRfEl/6CoWT/ZP+cadPDq6MqI7SDaVUFOUHgmkUXlH0YkZpTIyGm5Jsnb9HSCXGbwkI/mljmCbuwwCvCYTiXrqYOIa5EPf/lcph7ogk+4+lAQhU/6uq+8Uxiu5SFjB2fs6R21uUsqjkuyuwT6mbzKIhVbF41dPvr1lVUXdC7WINe+nSG+lXuGcduxfydq56WCcWjPfcgmv/cQQwmmPQ1zL0LkQYJpxOuzGAg05aMsM2EgogujI9VYmwmxnpsBxo8rw3EAX3Xw604tXuV7A1EIGD9GMlFV57jbHpfUyH7rjoAn/mZPUDlAi8Cn5+2k99M/z2TkT05U2H2BPh7QkQ6Ied8BWqXSE2eJN/qga6cCbX9DBe/G7ZmxbkUmS4zhblXke83hdIHpDqJF5BZCFwflJ58oO+oR3acFuqNIbNhni0eG9YZACbqf1S3equ0ueXVTnYMd1/2KYci1/Gnvh7fGz8tah+KKM3OHSDtJHcae68rp/KnwH6mL6GANjPA7LeO95LPFR1VEZVjSXuVHOAMz+g3M8pRKLDmzw/gVldGAaVCvCkEjgyB6V5F3+ggCbb+RfWdEom8tqJvGrFfnPqqW6ysCYSnInqLDv3wbKhb+T2Q2EDA6cPnD8EGrzJL5Qo4EtRPnZ6VDQm8MheNitYXrFXo9+UOvzlApOV02oUsHejdKVFFu1Ug3ch0MEIOEK6RSxBtdRbgviswGRmv46ajDOQRSQHxbKKhSzeRdFBPZ40ma2CXTS3YTaj7+LP+eCKLbFR36yawjQp3kLmGqpYUXHOOgNQXiyd+Dqlq8GcapVS5lCbVGqEG7wXUB8Ho6OFJHNXuQzJ7VEX8pHjH2QnjhefCWg/S62AC4OZH8rd8JqE3MTaZKR8vzpEoSgDi0D6sGUR2caOhSwCG11S+oz3evSj13CrGxRyc+bE9TTru1WpsVNk7AGB7hWWrZa8tb+3/f/CJRdX1NQhgN3ifCAr66Q0QncVvi2sysw7QjhToZMMHZmWdN3Wiv3gOFj4kfWvF7APexHsSQjm88pUxHD/9Erv4wP/6/tiUWirgC1wLxVGovLLtB6pX/CU23k1HLAS6EinZKsOFiP/dEKSYTp/hggID8JWGdmOsp+jhOAxWxJLXi+if49wKypQDhJ/ey6VKg3cm2hzN9s/wyN5y0LVBMYj9iMzdlGBYP34vOhZpa7gs/eizLvBPca7c4La3q787tBPC+aBA11wDLUJFQRSoTVI3evDg0yRbRAf5gRNWdX1E+smb1m/1vErSPr/cBB4OYsEy22htKCPCX+eps1RWm+4ZY787m9nZTW/KvMxXY/+4DO+BWJXm8tlc7gYRMWGhjuaIEX+ybji8VtGm2MwQVkOnMUACMeRlwxqaNlPmDL5XfnJMt7ms/Ev1arLa8KpXVvflByqeZQ5dRfdhWXkbeyNbfJTQ/zGP46W1G9olxnVThoG9uoKuY30f/nW5XPjqoKPX1J2ysRZesqa95OkhMrQ+C+4W4mP2smNBGn9mq1RIl65/k++L0aOduV/E7EXV+fiebtnizezaWPTG2lWmsSHwGKmVPziITTVNjVLDlZviv1CX/OiFsGEP+E1G2uZzy5kRmNmw4+JRoC4wCdTSUiYiHlFKUKEsDaA9OTk5K/////0r/////SwB0lGJNcAKFlIwBQ5R0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
"n": 4,
"start": 0,
"_shape": [],
"dtype": "int64",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 16,
"num_timesteps": 114688,
"_total_timesteps": 100000,
"_num_timesteps_at_start": 0,
"seed": 344042492,
"action_noise": null,
"start_time": 1671811492480693862,
"learning_rate": 0.0,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEcAAAAAAAAAAIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICJdj3pSxe8F/qzvu0eh76lohi+VnCqPwAAgD8AAAAAgPv/vd/Hqz+7lqa+zNkHv/OQv77ata6+AAAAAAAAAADmGwS9DEejPs9Asj0CrTu/gzuOvc+BAz4AAAAAAAAAAM2UtryfrHw/5Y5wvSn7gb+8a4q9iOjIvQAAAAAAAAAAzZaFPFwLoT+f+RU+BFhCvytOHD0CARM+AAAAAAAAAABNQDO914hiu5pyST4j3ke+otMlPJKBIb8AAAAAAACAPwCg6joVooM+uurMvV2FIr9DFf+8Zsp6vQAAAAAAAAAA5lWNvQUdUD9526e9akVtvx/tf76CbEE8AAAAAAAAAACaAR87YyhGP/S4hTzGhYC/9/RzPFzZBzwAAAAAAAAAAJo4wjzsJPK7Q2suu8rTnDzS4FK9QwSDPQAAgD8AAIA/RqcJviz70T5+E+U9b3lIv2KEgr7qEk4+AAAAAAAAAAAAAKg6Cg4nu3yUnT0Mxl89N+QpuvWi97wAAIA/AACAP0Czzz20GoQ9sg/IvoYA5L5HZW++rqiLvgAAAAAAAAAADQPGPf2Wuz6aIbu9buY6v7KlHD5DUvO9AAAAAAAAAAAAaDe9nzwiPu6L6D0+TA6/vxdQvVZ14j0AAAAAAAAAAEDZ5z2KeqA/YsylPs0KIr9E4tA+8kOkPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.1468799999999999,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFqbvNQSkckCUhpRSlIwBbJRLsYwBdJRHQG+l+tSydFx1fZQoaAZoCWgPQwhCIm3jz5FwQJSGlFKUaBVLimgWR0BvqCPwNLDidX2UKGgGaAloD0MIMJxrmCFocUCUhpRSlGgVS5toFkdAb61w6QvHtHV9lChoBmgJaA9DCKeufJanF3NAlIaUUpRoFUujaBZHQG+uLvkRzzV1fZQoaAZoCWgPQwjE0sCPKmByQJSGlFKUaBVLh2gWR0Bvrv3g1m8NdX2UKGgGaAloD0MIGTvhJThTcUCUhpRSlGgVS45oFkdAb67fzjFQ23V9lChoBmgJaA9DCADmWrRAw3BAlIaUUpRoFUuEaBZHQG+wKZtvXK91fZQoaAZoCWgPQwiez4B68wJwQJSGlFKUaBVLjWgWR0BvsiGahHskdX2UKGgGaAloD0MIRx/zAcHOcUCUhpRSlGgVS51oFkdAb7LPdEb5unV9lChoBmgJaA9DCELsTKGzEXFAlIaUUpRoFUuaaBZHQG+y26K+BYp1fZQoaAZoCWgPQwhA2v8AK9NxQJSGlFKUaBVLjmgWR0BvtSeiBXjmdX2UKGgGaAloD0MIIJijx2/4cUCUhpRSlGgVS6FoFkdAb7X6+nIhhnV9lChoBmgJaA9DCIMY6NoX8XNAlIaUUpRoFUu4aBZHQG+2QyRB/qh1fZQoaAZoCWgPQwgFvw0x3upyQJSGlFKUaBVLkWgWR0BvuBM+NcW1dX2UKGgGaAloD0MIYr8n1imNcUCUhpRSlGgVS3xoFkdAb7hjlxOtXHV9lChoBmgJaA9DCC8yAb+GN3NAlIaUUpRoFUueaBZHQG+5nDrJKap1fZQoaAZoCWgPQwj2JRsPdohxQJSGlFKUaBVLnWgWR0Bvuhdt2s7udX2UKGgGaAloD0MI9utOd14Xc0CUhpRSlGgVS61oFkdAb7wcyWRigHV9lChoBmgJaA9DCPA0mfE2anFAlIaUUpRoFUuEaBZHQG/AHEdeY2N1fZQoaAZoCWgPQwjvGvSlNxtxQJSGlFKUaBVLnGgWR0Bvwt/4IrvtdX2UKGgGaAloD0MIgA2IEFc+ckCUhpRSlGgVS6RoFkdAb8SywfQrtnV9lChoBmgJaA9DCKfpswNugnNAlIaUUpRoFUuxaBZHQG/FIi1RceN1fZQoaAZoCWgPQwgepn1zP8hzQJSGlFKUaBVLl2gWR0Bvxxz/6wdKdX2UKGgGaAloD0MIz04GR0lRckCUhpRSlGgVS6FoFkdAb8ez+m3vyHV9lChoBmgJaA9DCAu1pnlHCHRAlIaUUpRoFUu0aBZHQG/IM1baAWl1fZQoaAZoCWgPQwhlbr4RHc9yQJSGlFKUaBVLsGgWR0Bvyn7tRekYdX2UKGgGaAloD0MIz7uxoDBtckCUhpRSlGgVS6poFkdAb8xH4oJAuHV9lChoBmgJaA9DCCZSms1j1nJAlIaUUpRoFUuTaBZHQG/MrhR64Uh1fZQoaAZoCWgPQwj20hQBzj90QJSGlFKUaBVLmGgWR0BvzQlMRHwxdX2UKGgGaAloD0MIuoJtxNNNc0CUhpRSlGgVS6poFkdAb8103fhuO3V9lChoBmgJaA9DCJuOAG7WqXFAlIaUUpRoFUudaBZHQG/PNW2gFot1fZQoaAZoCWgPQwhAE2HDk35yQJSGlFKUaBVLvGgWR0Bvz3Wvr4WUdX2UKGgGaAloD0MIWRe30YD/cUCUhpRSlGgVS4xoFkdAb8+3ZPEbYXV9lChoBmgJaA9DCFcm/FI/JXRAlIaUUpRoFUupaBZHQG/ROY6XBxh1fZQoaAZoCWgPQwiSIjKsIrJzQJSGlFKUaBVLrGgWR0Bv12kLx7RfdX2UKGgGaAloD0MIUgslk5OOcUCUhpRSlGgVS6RoFkdAb9jiIcinpHV9lChoBmgJaA9DCL/zixJ0Q3BAlIaUUpRoFUucaBZHQG/ZjTKDCgt1fZQoaAZoCWgPQwgU56ijY09zQJSGlFKUaBVLrWgWR0Bv3FRrJr+HdX2UKGgGaAloD0MIoSx8fS02cUCUhpRSlGgVS6ZoFkdAb93tcfNiY3V9lChoBmgJaA9DCIf6XdiajnJAlIaUUpRoFUuTaBZHQG/eGzSkTHt1fZQoaAZoCWgPQwh1ApoI24xyQJSGlFKUaBVLhmgWR0Bv3oNPP9k0dX2UKGgGaAloD0MIxXO2gJD7c0CUhpRSlGgVS7NoFkdAb98x1xKg7HV9lChoBmgJaA9DCDSEY5b9qnNAlIaUUpRoFUuyaBZHQG/gW7e2uxN1fZQoaAZoCWgPQwhffTz0HTNzQJSGlFKUaBVLp2gWR0Bv4247Rv3rdX2UKGgGaAloD0MIutqK/SXTc0CUhpRSlGgVS6hoFkdAb+QCtihFmXV9lChoBmgJaA9DCBQ/xtz1sXJAlIaUUpRoFUuhaBZHQG/lapgkTpR1fZQoaAZoCWgPQwg1m8dhcI50QJSGlFKUaBVLwGgWR0Bv5f8TBZZCdX2UKGgGaAloD0MITcCvkaQRc0CUhpRSlGgVS6poFkdAb+ZSUkfLcXV9lChoBmgJaA9DCIFaDB6m0XFAlIaUUpRoFUucaBZHQG/mVpTMqz91fZQoaAZoCWgPQwgK+DWSRAlyQJSGlFKUaBVLrmgWR0Bv5peb/ffodX2UKGgGaAloD0MI56c4Drz0cUCUhpRSlGgVS6NoFkdAb+1+ZPVNH3V9lChoBmgJaA9DCNyhYTFqYnFAlIaUUpRoFUuhaBZHQG/uuARTS9d1fZQoaAZoCWgPQwgyHqUSnt1wQJSGlFKUaBVLl2gWR0Bv8NPnB+F2dX2UKGgGaAloD0MId06zQPtWcECUhpRSlGgVS5JoFkdAb/Hnr6ciGHV9lChoBmgJaA9DCHdqLjcY/HJAlIaUUpRoFUuHaBZHQG/ya6jFhod1fZQoaAZoCWgPQwhTknU4Ooh0QJSGlFKUaBVLoGgWR0Bv864MF2V3dX2UKGgGaAloD0MI+S6lLlkpcUCUhpRSlGgVS5hoFkdAb/PEF4cFQnV9lChoBmgJaA9DCDnVWpjFB3RAlIaUUpRoFUvBaBZHQG/z7aqS5iF1fZQoaAZoCWgPQwhYxoZuNm9zQJSGlFKUaBVLp2gWR0Bv9R3/xUeddX2UKGgGaAloD0MISIjyBS28ckCUhpRSlGgVS45oFkdAb/bzkp7TlXV9lChoBmgJaA9DCAYTfxR1GnBAlIaUUpRoFUuQaBZHQG/4piy6cy51fZQoaAZoCWgPQwhzSGqhpElxQJSGlFKUaBVLlWgWR0Bv+kpXp4bCdX2UKGgGaAloD0MItMcL6fBRckCUhpRSlGgVS5poFkdAb/qiWVu76HV9lChoBmgJaA9DCOF5qdiYiHJAlIaUUpRoFUueaBZHQG/70x/NJOF1fZQoaAZoCWgPQwjVr3Q+PApzQJSGlFKUaBVLo2gWR0Bv/DLr5ZbIdX2UKGgGaAloD0MIuVUQA90/ckCUhpRSlGgVS8loFkdAb/49pRGc4HV9lChoBmgJaA9DCHsQAvJloXFAlIaUUpRoFUuCaBZHQHABHiWE9Md1fZQoaAZoCWgPQwjTvrm/updxQJSGlFKUaBVLomgWR0BwAciJO32FdX2UKGgGaAloD0MIU8+CUB6AcECUhpRSlGgVS5xoFkdAcAHyRSxZ+3V9lChoBmgJaA9DCBGN7iB2gHFAlIaUUpRoFUuLaBZHQHACwnH/9511fZQoaAZoCWgPQwhBf6FHDM1yQJSGlFKUaBVLh2gWR0BwA0FHJ9y+dX2UKGgGaAloD0MIfERMiaQ3cUCUhpRSlGgVS5hoFkdAcAOFBppN9HV9lChoBmgJaA9DCPm9TX82u3FAlIaUUpRoFUucaBZHQHAEwqI7/4t1fZQoaAZoCWgPQwjJchJKH7RzQJSGlFKUaBVLpWgWR0BwBUCfYjB3dX2UKGgGaAloD0MIj20ZcFYucUCUhpRSlGgVS51oFkdAcAaTUAksz3V9lChoBmgJaA9DCEYKZeGrMnRAlIaUUpRoFUuxaBZHQHAG76LwWnF1fZQoaAZoCWgPQwh4Qq8/yQlzQJSGlFKUaBVLmWgWR0BwCC0G/vfCdX2UKGgGaAloD0MI0sjnFQ/2c0CUhpRSlGgVS55oFkdAcAhgHeJpFnV9lChoBmgJaA9DCNi7P97rP3FAlIaUUpRoFUutaBZHQHAIlFDv3Jx1fZQoaAZoCWgPQwjU78LWbMtxQJSGlFKUaBVLjWgWR0BwCTiYLLIQdX2UKGgGaAloD0MIKLfte9T8c0CUhpRSlGgVS6FoFkdAcAl/x2B8QnV9lChoBmgJaA9DCEvoLolzH3NAlIaUUpRoFUuvaBZHQHAKL3wkPc11fZQoaAZoCWgPQwiERxtHrNFyQJSGlFKUaBVLimgWR0BwCtdu5z5odX2UKGgGaAloD0MIqtTsgRYVcECUhpRSlGgVS41oFkdAcAubSqlxfnV9lChoBmgJaA9DCPAUcqXernBAlIaUUpRoFUuWaBZHQHAMYEbHZK51fZQoaAZoCWgPQwibjgBuVhx0QJSGlFKUaBVLmGgWR0BwDeJAMUh3dX2UKGgGaAloD0MIFK+ytqnjckCUhpRSlGgVS6doFkdAcA4/cWTHKnV9lChoBmgJaA9DCN2x2CZV3nJAlIaUUpRoFUuMaBZHQHAOVL39JjF1fZQoaAZoCWgPQwgyj/zBwEhyQJSGlFKUaBVLomgWR0BwDlTP0I1MdX2UKGgGaAloD0MIgSTs2wk1ckCUhpRSlGgVS5NoFkdAcBCr/Khcq3V9lChoBmgJaA9DCDum7soukm9AlIaUUpRoFUuQaBZHQHAQz1f3N9p1fZQoaAZoCWgPQwhS1Jl7iIxyQJSGlFKUaBVLjmgWR0BwEfWhAWzodX2UKGgGaAloD0MIGNALd24OdECUhpRSlGgVS7poFkdAcBIi6g/Ts3V9lChoBmgJaA9DCCrFjsbh+HFAlIaUUpRoFUuAaBZHQHASE4BFNL11fZQoaAZoCWgPQwg5KjdRSwZxQJSGlFKUaBVLlWgWR0BwEpxAB1cMdX2UKGgGaAloD0MI1ZP5R1/3cUCUhpRSlGgVS4VoFkdAcBNYVIqb0HV9lChoBmgJaA9DCHWQ14MJQ3FAlIaUUpRoFUucaBZHQHAUFMh5gPV1fZQoaAZoCWgPQwhmEB/Y8TpzQJSGlFKUaBVLqmgWR0BwFBWHUMG5dX2UKGgGaAloD0MIZVbvcPsJckCUhpRSlGgVS35oFkdAcBRS5y2hI3V9lChoBmgJaA9DCMY1PpO9KHJAlIaUUpRoFUueaBZHQHAViVbA1vV1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 12536,
"n_steps": null,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVxAEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHzxpcHl0aG9uLWlucHV0LTIzLTZmZTU5MzEyNDA2YT6UjAg8bGFtYmRhPpRLDUMAlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgWfZR9lChoE2gNjAxfX3F1YWxuYW1lX1+UaA2MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBSMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null,
"train_step": "Hello! This is a watermark to see if people are just copying each other. I actually copied too so no biggie. It's open source baby"
} |