--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: delivery_truck_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9466666666666667 --- # delivery_truck_classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1463 - Accuracy: 0.9467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.91 | 5 | 2.1248 | 0.0667 | | No log | 1.91 | 10 | 1.9221 | 0.24 | | No log | 2.91 | 15 | 1.7177 | 0.32 | | 2.0123 | 3.91 | 20 | 1.5490 | 0.4267 | | 2.0123 | 4.91 | 25 | 1.3192 | 0.5333 | | 2.0123 | 5.91 | 30 | 1.0764 | 0.64 | | 2.0123 | 6.91 | 35 | 0.8421 | 0.76 | | 1.3539 | 7.91 | 40 | 0.6504 | 0.8267 | | 1.3539 | 8.91 | 45 | 0.5243 | 0.8667 | | 1.3539 | 9.91 | 50 | 0.4282 | 0.88 | | 1.3539 | 10.91 | 55 | 0.3950 | 0.9067 | | 0.7315 | 11.91 | 60 | 0.3617 | 0.8933 | | 0.7315 | 12.91 | 65 | 0.3167 | 0.9067 | | 0.7315 | 13.91 | 70 | 0.3023 | 0.9067 | | 0.7315 | 14.91 | 75 | 0.2440 | 0.9333 | | 0.5713 | 15.91 | 80 | 0.2475 | 0.9333 | | 0.5713 | 16.91 | 85 | 0.2443 | 0.92 | | 0.5713 | 17.91 | 90 | 0.2093 | 0.96 | | 0.5713 | 18.91 | 95 | 0.2077 | 0.9467 | | 0.515 | 19.91 | 100 | 0.2124 | 0.9333 | | 0.515 | 20.91 | 105 | 0.2166 | 0.96 | | 0.515 | 21.91 | 110 | 0.1940 | 0.9333 | | 0.515 | 22.91 | 115 | 0.1984 | 0.9333 | | 0.4582 | 23.91 | 120 | 0.2395 | 0.9333 | | 0.4582 | 24.91 | 125 | 0.2480 | 0.92 | | 0.4582 | 25.91 | 130 | 0.2180 | 0.92 | | 0.4582 | 26.91 | 135 | 0.2232 | 0.9333 | | 0.4279 | 27.91 | 140 | 0.1977 | 0.9333 | | 0.4279 | 28.91 | 145 | 0.1847 | 0.9467 | | 0.4279 | 29.91 | 150 | 0.1922 | 0.9467 | | 0.4279 | 30.91 | 155 | 0.1787 | 0.9733 | | 0.4031 | 31.91 | 160 | 0.1626 | 0.9733 | | 0.4031 | 32.91 | 165 | 0.1667 | 0.9733 | | 0.4031 | 33.91 | 170 | 0.1871 | 0.9733 | | 0.4031 | 34.91 | 175 | 0.2015 | 0.9733 | | 0.3952 | 35.91 | 180 | 0.1836 | 0.9733 | | 0.3952 | 36.91 | 185 | 0.1856 | 0.96 | | 0.3952 | 37.91 | 190 | 0.1952 | 0.9333 | | 0.3952 | 38.91 | 195 | 0.1721 | 0.96 | | 0.369 | 39.91 | 200 | 0.1619 | 0.9467 | | 0.369 | 40.91 | 205 | 0.1659 | 0.96 | | 0.369 | 41.91 | 210 | 0.1569 | 0.96 | | 0.369 | 42.91 | 215 | 0.1358 | 0.96 | | 0.3262 | 43.91 | 220 | 0.1371 | 0.96 | | 0.3262 | 44.91 | 225 | 0.1337 | 0.9467 | | 0.3262 | 45.91 | 230 | 0.1374 | 0.9467 | | 0.3262 | 46.91 | 235 | 0.1789 | 0.96 | | 0.3616 | 47.91 | 240 | 0.2167 | 0.9467 | | 0.3616 | 48.91 | 245 | 0.1757 | 0.96 | | 0.3616 | 49.91 | 250 | 0.1729 | 0.9733 | | 0.3616 | 50.91 | 255 | 0.1722 | 0.9733 | | 0.303 | 51.91 | 260 | 0.1601 | 0.9733 | | 0.303 | 52.91 | 265 | 0.1592 | 0.9733 | | 0.303 | 53.91 | 270 | 0.1613 | 0.9733 | | 0.303 | 54.91 | 275 | 0.1575 | 0.9733 | | 0.305 | 55.91 | 280 | 0.1559 | 0.9733 | | 0.305 | 56.91 | 285 | 0.1489 | 0.9733 | | 0.305 | 57.91 | 290 | 0.1464 | 0.96 | | 0.305 | 58.91 | 295 | 0.1463 | 0.9467 | | 0.3328 | 59.91 | 300 | 0.1463 | 0.9467 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2