JEdward7777
commited on
Commit
·
d71def9
1
Parent(s):
b0d6f9e
update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -66,71 +66,71 @@ The following hyperparameters were used during training:
|
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| No log |
|
70 |
-
| No log |
|
71 |
-
| No log |
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
| 1.
|
77 |
-
| 1.
|
78 |
-
| 1.
|
79 |
-
| 1.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
-
| 0.
|
123 |
-
| 0.
|
124 |
-
| 0.
|
125 |
-
| 0.
|
126 |
-
| 0.
|
127 |
-
| 0.
|
128 |
-
| 0.
|
129 |
|
130 |
|
131 |
### Framework versions
|
132 |
|
133 |
-
- Transformers 4.
|
134 |
- Pytorch 1.13.1+cu116
|
135 |
-
- Datasets 2.
|
136 |
- Tokenizers 0.13.2
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.9466666666666667
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.1463
|
35 |
+
- Accuracy: 0.9467
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| No log | 0.91 | 5 | 2.1248 | 0.0667 |
|
70 |
+
| No log | 1.91 | 10 | 1.9221 | 0.24 |
|
71 |
+
| No log | 2.91 | 15 | 1.7177 | 0.32 |
|
72 |
+
| 2.0123 | 3.91 | 20 | 1.5490 | 0.4267 |
|
73 |
+
| 2.0123 | 4.91 | 25 | 1.3192 | 0.5333 |
|
74 |
+
| 2.0123 | 5.91 | 30 | 1.0764 | 0.64 |
|
75 |
+
| 2.0123 | 6.91 | 35 | 0.8421 | 0.76 |
|
76 |
+
| 1.3539 | 7.91 | 40 | 0.6504 | 0.8267 |
|
77 |
+
| 1.3539 | 8.91 | 45 | 0.5243 | 0.8667 |
|
78 |
+
| 1.3539 | 9.91 | 50 | 0.4282 | 0.88 |
|
79 |
+
| 1.3539 | 10.91 | 55 | 0.3950 | 0.9067 |
|
80 |
+
| 0.7315 | 11.91 | 60 | 0.3617 | 0.8933 |
|
81 |
+
| 0.7315 | 12.91 | 65 | 0.3167 | 0.9067 |
|
82 |
+
| 0.7315 | 13.91 | 70 | 0.3023 | 0.9067 |
|
83 |
+
| 0.7315 | 14.91 | 75 | 0.2440 | 0.9333 |
|
84 |
+
| 0.5713 | 15.91 | 80 | 0.2475 | 0.9333 |
|
85 |
+
| 0.5713 | 16.91 | 85 | 0.2443 | 0.92 |
|
86 |
+
| 0.5713 | 17.91 | 90 | 0.2093 | 0.96 |
|
87 |
+
| 0.5713 | 18.91 | 95 | 0.2077 | 0.9467 |
|
88 |
+
| 0.515 | 19.91 | 100 | 0.2124 | 0.9333 |
|
89 |
+
| 0.515 | 20.91 | 105 | 0.2166 | 0.96 |
|
90 |
+
| 0.515 | 21.91 | 110 | 0.1940 | 0.9333 |
|
91 |
+
| 0.515 | 22.91 | 115 | 0.1984 | 0.9333 |
|
92 |
+
| 0.4582 | 23.91 | 120 | 0.2395 | 0.9333 |
|
93 |
+
| 0.4582 | 24.91 | 125 | 0.2480 | 0.92 |
|
94 |
+
| 0.4582 | 25.91 | 130 | 0.2180 | 0.92 |
|
95 |
+
| 0.4582 | 26.91 | 135 | 0.2232 | 0.9333 |
|
96 |
+
| 0.4279 | 27.91 | 140 | 0.1977 | 0.9333 |
|
97 |
+
| 0.4279 | 28.91 | 145 | 0.1847 | 0.9467 |
|
98 |
+
| 0.4279 | 29.91 | 150 | 0.1922 | 0.9467 |
|
99 |
+
| 0.4279 | 30.91 | 155 | 0.1787 | 0.9733 |
|
100 |
+
| 0.4031 | 31.91 | 160 | 0.1626 | 0.9733 |
|
101 |
+
| 0.4031 | 32.91 | 165 | 0.1667 | 0.9733 |
|
102 |
+
| 0.4031 | 33.91 | 170 | 0.1871 | 0.9733 |
|
103 |
+
| 0.4031 | 34.91 | 175 | 0.2015 | 0.9733 |
|
104 |
+
| 0.3952 | 35.91 | 180 | 0.1836 | 0.9733 |
|
105 |
+
| 0.3952 | 36.91 | 185 | 0.1856 | 0.96 |
|
106 |
+
| 0.3952 | 37.91 | 190 | 0.1952 | 0.9333 |
|
107 |
+
| 0.3952 | 38.91 | 195 | 0.1721 | 0.96 |
|
108 |
+
| 0.369 | 39.91 | 200 | 0.1619 | 0.9467 |
|
109 |
+
| 0.369 | 40.91 | 205 | 0.1659 | 0.96 |
|
110 |
+
| 0.369 | 41.91 | 210 | 0.1569 | 0.96 |
|
111 |
+
| 0.369 | 42.91 | 215 | 0.1358 | 0.96 |
|
112 |
+
| 0.3262 | 43.91 | 220 | 0.1371 | 0.96 |
|
113 |
+
| 0.3262 | 44.91 | 225 | 0.1337 | 0.9467 |
|
114 |
+
| 0.3262 | 45.91 | 230 | 0.1374 | 0.9467 |
|
115 |
+
| 0.3262 | 46.91 | 235 | 0.1789 | 0.96 |
|
116 |
+
| 0.3616 | 47.91 | 240 | 0.2167 | 0.9467 |
|
117 |
+
| 0.3616 | 48.91 | 245 | 0.1757 | 0.96 |
|
118 |
+
| 0.3616 | 49.91 | 250 | 0.1729 | 0.9733 |
|
119 |
+
| 0.3616 | 50.91 | 255 | 0.1722 | 0.9733 |
|
120 |
+
| 0.303 | 51.91 | 260 | 0.1601 | 0.9733 |
|
121 |
+
| 0.303 | 52.91 | 265 | 0.1592 | 0.9733 |
|
122 |
+
| 0.303 | 53.91 | 270 | 0.1613 | 0.9733 |
|
123 |
+
| 0.303 | 54.91 | 275 | 0.1575 | 0.9733 |
|
124 |
+
| 0.305 | 55.91 | 280 | 0.1559 | 0.9733 |
|
125 |
+
| 0.305 | 56.91 | 285 | 0.1489 | 0.9733 |
|
126 |
+
| 0.305 | 57.91 | 290 | 0.1464 | 0.96 |
|
127 |
+
| 0.305 | 58.91 | 295 | 0.1463 | 0.9467 |
|
128 |
+
| 0.3328 | 59.91 | 300 | 0.1463 | 0.9467 |
|
129 |
|
130 |
|
131 |
### Framework versions
|
132 |
|
133 |
+
- Transformers 4.26.0
|
134 |
- Pytorch 1.13.1+cu116
|
135 |
+
- Datasets 2.9.0
|
136 |
- Tokenizers 0.13.2
|