JEdward7777 commited on
Commit
121233c
·
1 Parent(s): cc96921

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -9
README.md CHANGED
@@ -4,9 +4,24 @@ tags:
4
  - generated_from_trainer
5
  datasets:
6
  - imagefolder
 
 
7
  model-index:
8
  - name: delivery_truck_classification
9
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -16,13 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
18
  It achieves the following results on the evaluation set:
19
- - eval_loss: 0.1655
20
- - eval_accuracy: 0.9492
21
- - eval_runtime: 3.0476
22
- - eval_samples_per_second: 19.36
23
- - eval_steps_per_second: 0.656
24
- - epoch: 0.94
25
- - step: 4
26
 
27
  ## Model description
28
 
@@ -52,9 +62,55 @@ The following hyperparameters were used during training:
52
  - lr_scheduler_warmup_ratio: 0.1
53
  - num_epochs: 40
54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  ### Framework versions
56
 
57
  - Transformers 4.25.1
58
- - Pytorch 1.13.1+cu117
59
  - Datasets 2.8.0
60
  - Tokenizers 0.13.2
 
4
  - generated_from_trainer
5
  datasets:
6
  - imagefolder
7
+ metrics:
8
+ - accuracy
9
  model-index:
10
  - name: delivery_truck_classification
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9491525423728814
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.1253
35
+ - Accuracy: 0.9492
 
 
 
 
 
36
 
37
  ## Model description
38
 
 
62
  - lr_scheduler_warmup_ratio: 0.1
63
  - num_epochs: 40
64
 
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | No log | 0.94 | 4 | 1.8882 | 0.1186 |
70
+ | No log | 1.94 | 8 | 1.6799 | 0.3559 |
71
+ | No log | 2.94 | 12 | 1.4260 | 0.5763 |
72
+ | No log | 3.94 | 16 | 1.1092 | 0.6780 |
73
+ | 1.7242 | 4.94 | 20 | 0.8653 | 0.7458 |
74
+ | 1.7242 | 5.94 | 24 | 0.6787 | 0.7797 |
75
+ | 1.7242 | 6.94 | 28 | 0.5506 | 0.8305 |
76
+ | 1.7242 | 7.94 | 32 | 0.4174 | 0.8814 |
77
+ | 1.7242 | 8.94 | 36 | 0.3643 | 0.8814 |
78
+ | 0.8337 | 9.94 | 40 | 0.2680 | 0.9322 |
79
+ | 0.8337 | 10.94 | 44 | 0.2705 | 0.8983 |
80
+ | 0.8337 | 11.94 | 48 | 0.2270 | 0.9153 |
81
+ | 0.8337 | 12.94 | 52 | 0.1790 | 0.9492 |
82
+ | 0.8337 | 13.94 | 56 | 0.1694 | 0.9322 |
83
+ | 0.493 | 14.94 | 60 | 0.1776 | 0.9153 |
84
+ | 0.493 | 15.94 | 64 | 0.1831 | 0.9322 |
85
+ | 0.493 | 16.94 | 68 | 0.1765 | 0.9322 |
86
+ | 0.493 | 17.94 | 72 | 0.1575 | 0.9322 |
87
+ | 0.493 | 18.94 | 76 | 0.1472 | 0.9322 |
88
+ | 0.3966 | 19.94 | 80 | 0.1360 | 0.9322 |
89
+ | 0.3966 | 20.94 | 84 | 0.1448 | 0.9492 |
90
+ | 0.3966 | 21.94 | 88 | 0.1658 | 0.9322 |
91
+ | 0.3966 | 22.94 | 92 | 0.1652 | 0.9322 |
92
+ | 0.3966 | 23.94 | 96 | 0.1565 | 0.9322 |
93
+ | 0.3645 | 24.94 | 100 | 0.1701 | 0.9322 |
94
+ | 0.3645 | 25.94 | 104 | 0.1830 | 0.9322 |
95
+ | 0.3645 | 26.94 | 108 | 0.1682 | 0.9322 |
96
+ | 0.3645 | 27.94 | 112 | 0.1410 | 0.9492 |
97
+ | 0.3645 | 28.94 | 116 | 0.1291 | 0.9492 |
98
+ | 0.3358 | 29.94 | 120 | 0.1248 | 0.9492 |
99
+ | 0.3358 | 30.94 | 124 | 0.1275 | 0.9492 |
100
+ | 0.3358 | 31.94 | 128 | 0.1257 | 0.9492 |
101
+ | 0.3358 | 32.94 | 132 | 0.1288 | 0.9492 |
102
+ | 0.3358 | 33.94 | 136 | 0.1246 | 0.9492 |
103
+ | 0.3049 | 34.94 | 140 | 0.1219 | 0.9492 |
104
+ | 0.3049 | 35.94 | 144 | 0.1224 | 0.9492 |
105
+ | 0.3049 | 36.94 | 148 | 0.1246 | 0.9492 |
106
+ | 0.3049 | 37.94 | 152 | 0.1243 | 0.9492 |
107
+ | 0.3049 | 38.94 | 156 | 0.1248 | 0.9492 |
108
+ | 0.2962 | 39.94 | 160 | 0.1253 | 0.9492 |
109
+
110
+
111
  ### Framework versions
112
 
113
  - Transformers 4.25.1
114
+ - Pytorch 1.13.0+cu116
115
  - Datasets 2.8.0
116
  - Tokenizers 0.13.2