JEdward7777
commited on
Commit
·
121233c
1
Parent(s):
cc96921
update model card README.md
Browse files
README.md
CHANGED
@@ -4,9 +4,24 @@ tags:
|
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
- imagefolder
|
|
|
|
|
7 |
model-index:
|
8 |
- name: delivery_truck_classification
|
9 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -16,13 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
-
|
20 |
-
-
|
21 |
-
- eval_runtime: 3.0476
|
22 |
-
- eval_samples_per_second: 19.36
|
23 |
-
- eval_steps_per_second: 0.656
|
24 |
-
- epoch: 0.94
|
25 |
-
- step: 4
|
26 |
|
27 |
## Model description
|
28 |
|
@@ -52,9 +62,55 @@ The following hyperparameters were used during training:
|
|
52 |
- lr_scheduler_warmup_ratio: 0.1
|
53 |
- num_epochs: 40
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
### Framework versions
|
56 |
|
57 |
- Transformers 4.25.1
|
58 |
-
- Pytorch 1.13.
|
59 |
- Datasets 2.8.0
|
60 |
- Tokenizers 0.13.2
|
|
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
model-index:
|
10 |
- name: delivery_truck_classification
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: default
|
19 |
+
split: train
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.9491525423728814
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.1253
|
35 |
+
- Accuracy: 0.9492
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
- num_epochs: 40
|
64 |
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| No log | 0.94 | 4 | 1.8882 | 0.1186 |
|
70 |
+
| No log | 1.94 | 8 | 1.6799 | 0.3559 |
|
71 |
+
| No log | 2.94 | 12 | 1.4260 | 0.5763 |
|
72 |
+
| No log | 3.94 | 16 | 1.1092 | 0.6780 |
|
73 |
+
| 1.7242 | 4.94 | 20 | 0.8653 | 0.7458 |
|
74 |
+
| 1.7242 | 5.94 | 24 | 0.6787 | 0.7797 |
|
75 |
+
| 1.7242 | 6.94 | 28 | 0.5506 | 0.8305 |
|
76 |
+
| 1.7242 | 7.94 | 32 | 0.4174 | 0.8814 |
|
77 |
+
| 1.7242 | 8.94 | 36 | 0.3643 | 0.8814 |
|
78 |
+
| 0.8337 | 9.94 | 40 | 0.2680 | 0.9322 |
|
79 |
+
| 0.8337 | 10.94 | 44 | 0.2705 | 0.8983 |
|
80 |
+
| 0.8337 | 11.94 | 48 | 0.2270 | 0.9153 |
|
81 |
+
| 0.8337 | 12.94 | 52 | 0.1790 | 0.9492 |
|
82 |
+
| 0.8337 | 13.94 | 56 | 0.1694 | 0.9322 |
|
83 |
+
| 0.493 | 14.94 | 60 | 0.1776 | 0.9153 |
|
84 |
+
| 0.493 | 15.94 | 64 | 0.1831 | 0.9322 |
|
85 |
+
| 0.493 | 16.94 | 68 | 0.1765 | 0.9322 |
|
86 |
+
| 0.493 | 17.94 | 72 | 0.1575 | 0.9322 |
|
87 |
+
| 0.493 | 18.94 | 76 | 0.1472 | 0.9322 |
|
88 |
+
| 0.3966 | 19.94 | 80 | 0.1360 | 0.9322 |
|
89 |
+
| 0.3966 | 20.94 | 84 | 0.1448 | 0.9492 |
|
90 |
+
| 0.3966 | 21.94 | 88 | 0.1658 | 0.9322 |
|
91 |
+
| 0.3966 | 22.94 | 92 | 0.1652 | 0.9322 |
|
92 |
+
| 0.3966 | 23.94 | 96 | 0.1565 | 0.9322 |
|
93 |
+
| 0.3645 | 24.94 | 100 | 0.1701 | 0.9322 |
|
94 |
+
| 0.3645 | 25.94 | 104 | 0.1830 | 0.9322 |
|
95 |
+
| 0.3645 | 26.94 | 108 | 0.1682 | 0.9322 |
|
96 |
+
| 0.3645 | 27.94 | 112 | 0.1410 | 0.9492 |
|
97 |
+
| 0.3645 | 28.94 | 116 | 0.1291 | 0.9492 |
|
98 |
+
| 0.3358 | 29.94 | 120 | 0.1248 | 0.9492 |
|
99 |
+
| 0.3358 | 30.94 | 124 | 0.1275 | 0.9492 |
|
100 |
+
| 0.3358 | 31.94 | 128 | 0.1257 | 0.9492 |
|
101 |
+
| 0.3358 | 32.94 | 132 | 0.1288 | 0.9492 |
|
102 |
+
| 0.3358 | 33.94 | 136 | 0.1246 | 0.9492 |
|
103 |
+
| 0.3049 | 34.94 | 140 | 0.1219 | 0.9492 |
|
104 |
+
| 0.3049 | 35.94 | 144 | 0.1224 | 0.9492 |
|
105 |
+
| 0.3049 | 36.94 | 148 | 0.1246 | 0.9492 |
|
106 |
+
| 0.3049 | 37.94 | 152 | 0.1243 | 0.9492 |
|
107 |
+
| 0.3049 | 38.94 | 156 | 0.1248 | 0.9492 |
|
108 |
+
| 0.2962 | 39.94 | 160 | 0.1253 | 0.9492 |
|
109 |
+
|
110 |
+
|
111 |
### Framework versions
|
112 |
|
113 |
- Transformers 4.25.1
|
114 |
+
- Pytorch 1.13.0+cu116
|
115 |
- Datasets 2.8.0
|
116 |
- Tokenizers 0.13.2
|