File size: 4,236 Bytes
5cfc72d 096f619 5cfc72d 096f619 5cfc72d 096f619 5cfc72d 096f619 5cfc72d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0600
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 1 | 1.4318 | 0.8 |
| No log | 2.0 | 2 | 1.3863 | 0.8 |
| No log | 3.0 | 3 | 1.2880 | 0.8 |
| No log | 4.0 | 4 | 1.1589 | 0.8 |
| No log | 5.0 | 5 | 0.9954 | 0.8 |
| No log | 6.0 | 6 | 0.8942 | 0.8 |
| No log | 7.0 | 7 | 0.8269 | 0.8 |
| No log | 8.0 | 8 | 0.7702 | 0.8 |
| No log | 9.0 | 9 | 0.7138 | 1.0 |
| No log | 10.0 | 10 | 0.6602 | 1.0 |
| No log | 11.0 | 11 | 0.6255 | 1.0 |
| No log | 12.0 | 12 | 0.5900 | 1.0 |
| No log | 13.0 | 13 | 0.5367 | 1.0 |
| No log | 14.0 | 14 | 0.4790 | 1.0 |
| No log | 15.0 | 15 | 0.4158 | 1.0 |
| No log | 16.0 | 16 | 0.3573 | 1.0 |
| No log | 17.0 | 17 | 0.2964 | 1.0 |
| No log | 18.0 | 18 | 0.2439 | 1.0 |
| No log | 19.0 | 19 | 0.2028 | 1.0 |
| 0.5248 | 20.0 | 20 | 0.1671 | 1.0 |
| 0.5248 | 21.0 | 21 | 0.1399 | 1.0 |
| 0.5248 | 22.0 | 22 | 0.1182 | 1.0 |
| 0.5248 | 23.0 | 23 | 0.1013 | 1.0 |
| 0.5248 | 24.0 | 24 | 0.0897 | 1.0 |
| 0.5248 | 25.0 | 25 | 0.0824 | 1.0 |
| 0.5248 | 26.0 | 26 | 0.0769 | 1.0 |
| 0.5248 | 27.0 | 27 | 0.0721 | 1.0 |
| 0.5248 | 28.0 | 28 | 0.0701 | 1.0 |
| 0.5248 | 29.0 | 29 | 0.0697 | 1.0 |
| 0.5248 | 30.0 | 30 | 0.0693 | 1.0 |
| 0.5248 | 31.0 | 31 | 0.0672 | 1.0 |
| 0.5248 | 32.0 | 32 | 0.0646 | 1.0 |
| 0.5248 | 33.0 | 33 | 0.0633 | 1.0 |
| 0.5248 | 34.0 | 34 | 0.0628 | 1.0 |
| 0.5248 | 35.0 | 35 | 0.0626 | 1.0 |
| 0.5248 | 36.0 | 36 | 0.0626 | 1.0 |
| 0.5248 | 37.0 | 37 | 0.0617 | 1.0 |
| 0.5248 | 38.0 | 38 | 0.0608 | 1.0 |
| 0.5248 | 39.0 | 39 | 0.0603 | 1.0 |
| 0.2241 | 40.0 | 40 | 0.0600 | 1.0 |
### Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|