--- license: mit tags: - generated_from_trainer model-index: - name: 2-finetuned-xlm-r-masakhaner-swa-whole-word-phonetic results: [] --- # 2-finetuned-xlm-r-masakhaner-swa-whole-word-phonetic This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 38.6651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-08 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 61 | 39.9450 | | No log | 2.0 | 122 | 39.5738 | | No log | 3.0 | 183 | 40.0065 | | No log | 4.0 | 244 | 39.2715 | | No log | 5.0 | 305 | 38.7492 | | No log | 6.0 | 366 | 38.8567 | | No log | 7.0 | 427 | 38.7596 | | No log | 8.0 | 488 | 38.6652 | | 42.1342 | 9.0 | 549 | 38.6603 | | 42.1342 | 10.0 | 610 | 38.6651 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1