File size: 2,163 Bytes
6327817 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: wav2vec2-large-robust-12-ft-emotion-msp-dim-finetuned-gtzan
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-robust-12-ft-emotion-msp-dim-finetuned-gtzan
This model is a fine-tuned version of [audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim](https://huggingface.co/audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7711
- Accuracy: 0.83
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.186 | 1.0 | 112 | 2.1638 | 0.3 |
| 1.655 | 2.0 | 225 | 1.7677 | 0.48 |
| 1.5148 | 3.0 | 337 | 1.3746 | 0.54 |
| 1.2349 | 4.0 | 450 | 1.1218 | 0.64 |
| 0.9702 | 5.0 | 562 | 1.0244 | 0.69 |
| 0.9191 | 6.0 | 675 | 0.9180 | 0.75 |
| 0.6891 | 7.0 | 787 | 0.8959 | 0.76 |
| 0.628 | 8.0 | 900 | 0.8084 | 0.81 |
| 0.7337 | 9.0 | 1012 | 0.7742 | 0.83 |
| 0.5573 | 9.96 | 1120 | 0.7711 | 0.83 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|