IsmatS commited on
Commit
463c2c1
·
verified ·
1 Parent(s): 201277a

Upload folder using huggingface_hub

Browse files
Files changed (11) hide show
  1. .DS_Store +0 -0
  2. .gitignore +163 -0
  3. README.md +148 -0
  4. az_tokenizer.json +0 -0
  5. az_wiki_data.json +0 -0
  6. collect_data.py +127 -0
  7. generate.py +68 -0
  8. prepare_data.py +124 -0
  9. push_to_hf.py +17 -0
  10. requirements.txt +42 -0
  11. train.py +274 -0
.DS_Store ADDED
Binary file (6.15 kB). View file
 
.gitignore ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+ .vscode
6
+ /wandb
7
+ # C extensions
8
+ *.so
9
+ best_model.pt
10
+ # Distribution / packaging
11
+ .Python
12
+ build/
13
+ develop-eggs/
14
+ dist/
15
+ downloads/
16
+ eggs/
17
+ .eggs/
18
+ lib/
19
+ lib64/
20
+ parts/
21
+ sdist/
22
+ var/
23
+ wheels/
24
+ share/python-wheels/
25
+ *.egg-info/
26
+ .installed.cfg
27
+ *.egg
28
+ MANIFEST
29
+
30
+ # PyInstaller
31
+ # Usually these files are written by a python script from a template
32
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
33
+ *.manifest
34
+ *.spec
35
+
36
+ # Installer logs
37
+ pip-log.txt
38
+ pip-delete-this-directory.txt
39
+
40
+ # Unit test / coverage reports
41
+ htmlcov/
42
+ .tox/
43
+ .nox/
44
+ .coverage
45
+ .coverage.*
46
+ .cache
47
+ nosetests.xml
48
+ coverage.xml
49
+ *.cover
50
+ *.py,cover
51
+ .hypothesis/
52
+ .pytest_cache/
53
+ cover/
54
+
55
+ # Translations
56
+ *.mo
57
+ *.pot
58
+
59
+ # Django stuff:
60
+ *.log
61
+ local_settings.py
62
+ db.sqlite3
63
+ db.sqlite3-journal
64
+
65
+ # Flask stuff:
66
+ instance/
67
+ .webassets-cache
68
+
69
+ # Scrapy stuff:
70
+ .scrapy
71
+
72
+ # Sphinx documentation
73
+ docs/_build/
74
+
75
+ # PyBuilder
76
+ .pybuilder/
77
+ target/
78
+
79
+ # Jupyter Notebook
80
+ .ipynb_checkpoints
81
+
82
+ # IPython
83
+ profile_default/
84
+ ipython_config.py
85
+
86
+ # pyenv
87
+ # For a library or package, you might want to ignore these files since the code is
88
+ # intended to run in multiple environments; otherwise, check them in:
89
+ # .python-version
90
+
91
+ # pipenv
92
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
93
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
94
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
95
+ # install all needed dependencies.
96
+ #Pipfile.lock
97
+
98
+ # poetry
99
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
100
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
101
+ # commonly ignored for libraries.
102
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
103
+ #poetry.lock
104
+
105
+ # pdm
106
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
107
+ #pdm.lock
108
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
109
+ # in version control.
110
+ # https://pdm.fming.dev/latest/usage/project/#working-with-version-control
111
+ .pdm.toml
112
+ .pdm-python
113
+ .pdm-build/
114
+
115
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
116
+ __pypackages__/
117
+
118
+ # Celery stuff
119
+ celerybeat-schedule
120
+ celerybeat.pid
121
+
122
+ # SageMath parsed files
123
+ *.sage.py
124
+
125
+ # Environments
126
+ .env
127
+ .venv
128
+ env/
129
+ venv/
130
+ ENV/
131
+ env.bak/
132
+ venv.bak/
133
+
134
+ # Spyder project settings
135
+ .spyderproject
136
+ .spyproject
137
+
138
+ # Rope project settings
139
+ .ropeproject
140
+
141
+ # mkdocs documentation
142
+ /site
143
+
144
+ # mypy
145
+ .mypy_cache/
146
+ .dmypy.json
147
+ dmypy.json
148
+
149
+ # Pyre type checker
150
+ .pyre/
151
+
152
+ # pytype static type analyzer
153
+ .pytype/
154
+
155
+ # Cython debug symbols
156
+ cython_debug/
157
+
158
+ # PyCharm
159
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
160
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
161
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
162
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
163
+ #.idea/
README.md ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Azerbaijani Language GPT Model
2
+
3
+ This repository contains an implementation of a GPT (Generative Pre-trained Transformer) model trained on Azerbaijani Wikipedia data. The model is designed to understand and generate Azerbaijani text.
4
+
5
+ ## Project Structure
6
+ ```
7
+ .
8
+ ├── README.md
9
+ ├── az_tokenizer.json # Trained tokenizer for Azerbaijani text
10
+ ├── az_wiki_data.json # Collected Wikipedia data
11
+ ├── best_model.pt # Saved state of the best trained model
12
+ ├── collect_data.py # Script for collecting Wikipedia articles
13
+ ├── generate.py # Text generation script using the trained model
14
+ ├── prepare_data.py # Data preprocessing and tokenizer training
15
+ ├── requirements.txt # Project dependencies
16
+ └── train.py # GPT model training script
17
+ ```
18
+
19
+ ## Setup
20
+
21
+ 1. Create and activate virtual environment:
22
+ ```bash
23
+ python -m venv .venv
24
+ source .venv/bin/activate # On Windows: .venv\Scripts\activate
25
+ ```
26
+
27
+ 2. Install dependencies based on your system:
28
+
29
+ For Mac with Apple Silicon (M1/M2):
30
+ ```bash
31
+ # Install PyTorch for Apple Silicon
32
+ pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
33
+
34
+ # Install other required packages
35
+ pip install transformers wikipedia-api beautifulsoup4 requests
36
+ ```
37
+
38
+ For other systems:
39
+ ```bash
40
+ pip install -r requirements.txt
41
+ ```
42
+
43
+ ## Platform-Specific Notes
44
+
45
+ ### Apple Silicon (M1/M2) Macs
46
+ - Uses MPS (Metal Performance Shaders) for acceleration
47
+ - Optimized memory management for Apple Silicon
48
+ - May require specific PyTorch nightly builds
49
+
50
+ ### CUDA-enabled GPUs
51
+ - Automatically utilizes CUDA if available
52
+ - Implements mixed precision training
53
+ - Memory optimization through gradient accumulation
54
+
55
+ ## Data Collection
56
+
57
+ 1. Collect Azerbaijani Wikipedia articles:
58
+ ```bash
59
+ python collect_data.py
60
+ ```
61
+ This will save articles to `az_wiki_data.json`
62
+
63
+ 2. Prepare data and train tokenizer:
64
+ ```bash
65
+ python prepare_data.py
66
+ ```
67
+ This will create `az_tokenizer.json`
68
+
69
+ ## Training
70
+
71
+ Train the GPT model:
72
+ ```bash
73
+ python train.py
74
+ ```
75
+
76
+ The training script:
77
+ - Uses mixed precision training
78
+ - Implements gradient accumulation
79
+ - Saves model checkpoints every 5 epochs
80
+ - Saves the best model based on validation loss
81
+
82
+ ## Model Architecture
83
+
84
+ - Transformer-based architecture
85
+ - Configuration adjustable in `train.py`:
86
+ - Embedding dimension: 512
87
+ - Attention heads: 8
88
+ - Layers: 6
89
+ - Block size: 128
90
+ - Batch size: 4
91
+
92
+ ## Text Generation
93
+
94
+ Generate text using the trained model:
95
+ ```bash
96
+ python generate.py
97
+ ```
98
+ The `generate.py` script:
99
+ - Loads the trained model and tokenizer
100
+ - Generates text based on a user-provided prompt
101
+ - Implements sampling strategies such as nucleus sampling and temperature scaling
102
+
103
+ ## Files Description
104
+
105
+ - `collect_data.py`: Collects articles from Azerbaijani Wikipedia using categories like history, culture, literature, and geography
106
+ - `prepare_data.py`: Preprocesses text and trains a BPE tokenizer
107
+ - `train.py`: Contains GPT model implementation and training loop
108
+ - `generate.py`: Generates text using the trained model and sampling strategies
109
+ - `az_wiki_data.json`: Collected and preprocessed Wikipedia articles
110
+ - `az_tokenizer.json`: Trained BPE tokenizer for Azerbaijani text
111
+ - `best_model.pt`: Saved state of the best model during training
112
+
113
+ ## Training Output
114
+
115
+ The model saves:
116
+ - Best model state as `best_model.pt`
117
+ - Regular checkpoints as `checkpoint_epoch_N.pt`
118
+ - Interrupted training state as `interrupt_checkpoint.pt`
119
+
120
+ ## Memory Requirements
121
+
122
+ - Recommended: GPU with at least 8GB memory
123
+ - For larger models: Use gradient accumulation steps
124
+ - Adjustable batch size and model size based on available memory
125
+
126
+ ## Troubleshooting
127
+
128
+ Common Issues:
129
+ 1. Memory Errors:
130
+ - Reduce batch size
131
+ - Enable gradient accumulation
132
+ - Reduce model size
133
+ - Clear GPU cache regularly
134
+
135
+ 2. PyTorch Installation:
136
+ - For Apple Silicon: Use the nightly build command
137
+ - For CUDA: Install appropriate CUDA version
138
+
139
+ 3. Data Loading:
140
+ - Reduce number of workers if getting process errors
141
+ - Enable pin memory for faster data transfer
142
+
143
+ ## Future Improvements
144
+
145
+ - [ ] Implement model evaluation metrics
146
+ - [ ] Add data augmentation techniques
147
+ - [ ] Implement distributed training
148
+ - [ ] Add model compression techniques
az_tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
az_wiki_data.json ADDED
The diff for this file is too large to render. See raw diff
 
collect_data.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import wikipediaapi
2
+ import json
3
+ from tqdm import tqdm
4
+ import time
5
+
6
+ def get_wiki_pages(categories=["Azərbaycan tarixi", "Azərbaycan mədəniyyəti",
7
+ "Azərbaycan ədəbiyyatı", "Azərbaycan coğrafiyası"],
8
+ min_length=500, max_pages=1000):
9
+ """
10
+ Recursively collect substantial Azerbaijani Wikipedia pages from multiple categories
11
+ """
12
+ wiki = wikipediaapi.Wikipedia(
13
+ language='az',
14
+ extract_format=wikipediaapi.ExtractFormat.WIKI,
15
+ user_agent='AzGPTDataCollector/1.0'
16
+ )
17
+
18
+ collected_pages = {}
19
+ visited_pages = set()
20
+
21
+ def collect_pages(category_title):
22
+ if len(collected_pages) >= max_pages:
23
+ return
24
+
25
+ category = wiki.page(f"Kateqoriya:{category_title}")
26
+ if not category.exists():
27
+ print(f"Category not found: {category_title}")
28
+ return
29
+
30
+ # First, process all articles in this category
31
+ for member in category.categorymembers.values():
32
+ if len(collected_pages) >= max_pages:
33
+ return
34
+
35
+ if member.title in visited_pages:
36
+ continue
37
+
38
+ visited_pages.add(member.title)
39
+
40
+ # Skip if it's a category or template page
41
+ if member.title.startswith('Kateqoriya:') or member.title.startswith('Şablon:'):
42
+ continue
43
+
44
+ # Skip if content is too short
45
+ if len(member.text) < min_length:
46
+ continue
47
+
48
+ collected_pages[member.title] = {
49
+ 'title': member.title,
50
+ 'text': member.text,
51
+ 'url': member.fullurl,
52
+ 'length': len(member.text)
53
+ }
54
+ print(f"Collected: {member.title} ({len(member.text)} chars)")
55
+
56
+ # Delay to avoid hitting API limits
57
+ time.sleep(0.1)
58
+
59
+ # Then process subcategories
60
+ for subcategory in category.categorymembers.values():
61
+ if subcategory.title.startswith('Kateqoriya:'):
62
+ collect_pages(subcategory.title.replace('Kateqoriya:', ''))
63
+
64
+ # Start collection from each category
65
+ for category in categories:
66
+ print(f"\nStarting collection from category: {category}")
67
+ collect_pages(category)
68
+
69
+ return collected_pages
70
+
71
+ def preprocess_text(text):
72
+ """
73
+ Enhanced text preprocessing for Azerbaijani text
74
+ """
75
+ # Remove extra whitespace
76
+ text = ' '.join(text.split())
77
+
78
+ # Add space after punctuation if missing
79
+ for punct in '.!?،؛:()[]{}«»':
80
+ text = text.replace(punct, punct + ' ')
81
+
82
+ # Fix common OCR errors in Azerbaijani text
83
+ replacements = {
84
+ 'i': 'ı', # Replace dotted i with dotless ı where appropriate
85
+ 'І': 'I',
86
+ '...': '…',
87
+ }
88
+ for old, new in replacements.items():
89
+ text = text.replace(old, new)
90
+
91
+ return text
92
+
93
+ def save_dataset(pages, output_file='az_wiki_data.json'):
94
+ """
95
+ Save collected pages to a JSON file
96
+ """
97
+ with open(output_file, 'w', encoding='utf-8') as f:
98
+ json.dump(pages, f, ensure_ascii=False, indent=2)
99
+ print(f"Saved {len(pages)} pages to {output_file}")
100
+
101
+ def main():
102
+ # Collect pages with minimum length requirement
103
+ print("Starting data collection...")
104
+ pages = get_wiki_pages(min_length=500, max_pages=100) # 500 chars minimum length
105
+
106
+ # Preprocess and save
107
+ print("\nPreprocessing and saving data...")
108
+ for title in pages:
109
+ pages[title]['text'] = preprocess_text(pages[title]['text'])
110
+
111
+ save_dataset(pages)
112
+
113
+ # Print statistics
114
+ total_chars = sum(page['length'] for page in pages.values())
115
+ if pages:
116
+ print(f"\nCollection complete!")
117
+ print(f"Total pages: {len(pages)}")
118
+ print(f"Total characters: {total_chars}")
119
+ print(f"Average page length: {total_chars / len(pages):.2f} characters")
120
+
121
+ # Print some titles as examples
122
+ print("\nSample of collected articles:")
123
+ for title in list(pages.keys())[:5]:
124
+ print(f"- {title} ({pages[title]['length']} chars)")
125
+
126
+ if __name__ == "__main__":
127
+ main()
generate.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from tokenizers import Tokenizer
3
+ from train import GPT, GPTConfig # Assuming your model definition is in train.py
4
+
5
+ import torch.nn.functional as F
6
+
7
+ def nucleus_sampling(logits, p=0.9):
8
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True)
9
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
10
+ sorted_indices_to_remove = cumulative_probs > p
11
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
12
+ sorted_indices_to_remove[..., 0] = 0
13
+ logits[sorted_indices[sorted_indices_to_remove]] = -float('Inf')
14
+ probabilities = F.softmax(logits, dim=-1)
15
+ next_token_id = torch.multinomial(probabilities, num_samples=1).item()
16
+ return next_token_id
17
+
18
+ def load_model_and_tokenizer():
19
+ # Load the model configuration and tokenizer
20
+ config = GPTConfig()
21
+ model = GPT(config)
22
+ model.load_state_dict(torch.load('best_model.pt', map_location=torch.device('cpu')))
23
+ model.eval() # Set model to evaluation mode
24
+ tokenizer = Tokenizer.from_file("az_tokenizer.json") # Load tokenizer
25
+ return model, tokenizer
26
+
27
+ def apply_repetition_penalty(logits, input_ids, penalty=1.2):
28
+ # Penalize the logits for tokens that have already been generated
29
+ for token_id in set(input_ids):
30
+ logits[0, token_id] /= penalty
31
+ return logits
32
+
33
+ def generate_text(model, tokenizer, prompt, max_new_tokens=50, temperature=0.001, p=0.95, repetition_penalty=1.5, device='cpu'):
34
+ model = model.to(device)
35
+ input_ids = tokenizer.encode(prompt).ids
36
+ input_tensor = torch.tensor([input_ids], dtype=torch.long).to(device)
37
+
38
+ for _ in range(max_new_tokens):
39
+ with torch.no_grad():
40
+ output_logits, _ = model(input_tensor)
41
+
42
+ # Apply temperature scaling
43
+ logits = output_logits[:, -1, :] / temperature
44
+
45
+ # Apply repetition penalty
46
+ logits = apply_repetition_penalty(logits.clone(), input_ids, penalty=repetition_penalty)
47
+
48
+ # Use nucleus sampling
49
+ next_token_id = nucleus_sampling(logits[0], p=p)
50
+
51
+ input_ids.append(next_token_id)
52
+ input_tensor = torch.tensor([input_ids], dtype=torch.long).to(device)
53
+
54
+ if next_token_id == tokenizer.token_to_id('[END]'): # Replace with actual end token if applicable
55
+ break
56
+
57
+ generated_text = tokenizer.decode(input_ids)
58
+ return generated_text.replace(' i ', ' ') # Example: minor post-processing to clean up spaces
59
+
60
+
61
+ def main():
62
+ model, tokenizer = load_model_and_tokenizer()
63
+ prompt = "Azərbaycanın tarixi" # Your input prompt
64
+ generated_text = generate_text(model, tokenizer, prompt, p=0.9) # Adjust p as needed
65
+ print("Generated Text:", generated_text)
66
+
67
+ if __name__ == '__main__':
68
+ main()
prepare_data.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import torch
3
+ from torch.utils.data import Dataset, DataLoader
4
+ from transformers import AutoTokenizer, PreTrainedTokenizerFast
5
+ from tokenizers import Tokenizer, models, normalizers, pre_tokenizers, trainers, processors
6
+ from tokenizers.models import BPE
7
+ from tokenizers.trainers import BpeTrainer
8
+ from tokenizers.pre_tokenizers import Whitespace
9
+ import numpy as np
10
+ from tqdm import tqdm
11
+
12
+ class AzerbaijaniTokenizer:
13
+ def __init__(self, vocab_size=50000):
14
+ self.tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
15
+ self.tokenizer.normalizer = normalizers.Sequence([
16
+ normalizers.NFD(),
17
+ normalizers.Lowercase(),
18
+ normalizers.StripAccents(),
19
+ ])
20
+ self.tokenizer.pre_tokenizer = pre_tokenizers.Sequence([
21
+ pre_tokenizers.WhitespaceSplit(),
22
+ pre_tokenizers.Punctuation(),
23
+ ])
24
+
25
+ self.trainer = BpeTrainer(
26
+ vocab_size=vocab_size,
27
+ special_tokens=["[PAD]", "[UNK]", "[CLS]", "[SEP]", "[MASK]"],
28
+ min_frequency=2
29
+ )
30
+
31
+ def train(self, texts):
32
+ """Train the tokenizer on the given texts"""
33
+ print("Training tokenizer...")
34
+ self.tokenizer.train_from_iterator(texts, trainer=self.trainer)
35
+
36
+ def save(self, path):
37
+ """Save the tokenizer to a file"""
38
+ self.tokenizer.save(path)
39
+
40
+ def load(self, path):
41
+ """Load the tokenizer from a file"""
42
+ self.tokenizer = Tokenizer.from_file(path)
43
+
44
+ def get_vocab_size(self):
45
+ return self.tokenizer.get_vocab_size()
46
+
47
+ class WikiTextDataset(Dataset):
48
+ def __init__(self, texts, tokenizer, max_length=512):
49
+ self.tokenizer = tokenizer
50
+ self.max_length = max_length
51
+
52
+ print("Tokenizing texts...")
53
+ self.examples = []
54
+
55
+ for text in tqdm(texts):
56
+ # Tokenize the text
57
+ tokens = self.tokenizer.encode(text).ids
58
+
59
+ # Create sequences of max_length tokens
60
+ for i in range(0, len(tokens) - max_length, max_length // 2):
61
+ chunk = tokens[i:i + max_length]
62
+ if len(chunk) < max_length:
63
+ # Pad if necessary
64
+ chunk = chunk + [0] * (max_length - len(chunk))
65
+ self.examples.append(chunk)
66
+
67
+ def __len__(self):
68
+ return len(self.examples)
69
+
70
+ def __getitem__(self, idx):
71
+ # Return input and target sequences (for next token prediction)
72
+ tokens = self.examples[idx]
73
+ return torch.tensor(tokens[:-1]), torch.tensor(tokens[1:])
74
+
75
+ def prepare_data_and_tokenizer():
76
+ # Load the collected Wikipedia data
77
+ print("Loading Wikipedia data...")
78
+ with open('az_wiki_data.json', 'r', encoding='utf-8') as f:
79
+ wiki_data = json.load(f)
80
+
81
+ # Extract texts
82
+ texts = [page['text'] for page in wiki_data.values()]
83
+
84
+ # Create and train tokenizer
85
+ tokenizer = AzerbaijaniTokenizer(vocab_size=50000)
86
+ tokenizer.train(texts)
87
+
88
+ # Save the tokenizer
89
+ tokenizer.save("az_tokenizer.json")
90
+ print(f"Tokenizer vocabulary size: {tokenizer.get_vocab_size()}")
91
+
92
+ # Create dataset
93
+ dataset = WikiTextDataset(texts, tokenizer.tokenizer)
94
+
95
+ # Create data loaders
96
+ train_size = int(0.9 * len(dataset))
97
+ val_size = len(dataset) - train_size
98
+
99
+ train_dataset, val_dataset = torch.utils.data.random_split(
100
+ dataset, [train_size, val_size]
101
+ )
102
+
103
+ train_loader = DataLoader(
104
+ train_dataset,
105
+ batch_size=16,
106
+ shuffle=True,
107
+ num_workers=4
108
+ )
109
+
110
+ val_loader = DataLoader(
111
+ val_dataset,
112
+ batch_size=16,
113
+ shuffle=False,
114
+ num_workers=4
115
+ )
116
+
117
+ print(f"Total sequences: {len(dataset)}")
118
+ print(f"Training sequences: {len(train_dataset)}")
119
+ print(f"Validation sequences: {len(val_dataset)}")
120
+
121
+ return tokenizer, train_loader, val_loader
122
+
123
+ if __name__ == "__main__":
124
+ tokenizer, train_loader, val_loader = prepare_data_and_tokenizer()
push_to_hf.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from dotenv import load_dotenv
3
+ from huggingface_hub import login, HfApi
4
+
5
+ # Load the Hugging Face token from .env
6
+ load_dotenv()
7
+ hf_token = os.getenv("HUGGINGFACE_TOKEN")
8
+
9
+ # Log in to Hugging Face
10
+ login(token=hf_token)
11
+
12
+ # Define your repository ID
13
+ repo_id = "IsmatS/gpt-wiki-az"
14
+
15
+ # Initialize HfApi and upload the model folder
16
+ api = HfApi()
17
+ api.upload_folder(folder_path="./", path_in_repo="", repo_id=repo_id)
requirements.txt ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ beautifulsoup4==4.12.3
2
+ certifi==2024.8.30
3
+ charset-normalizer==3.4.0
4
+ click==8.1.7
5
+ docker-pycreds==0.4.0
6
+ filelock==3.16.1
7
+ fsspec==2024.10.0
8
+ gitdb==4.0.11
9
+ GitPython==3.1.43
10
+ huggingface-hub==0.26.2
11
+ idna==3.10
12
+ Jinja2==3.1.4
13
+ MarkupSafe==3.0.2
14
+ mpmath==1.3.0
15
+ networkx==3.4.2
16
+ numpy==2.1.3
17
+ packaging==24.2
18
+ pillow==11.0.0
19
+ platformdirs==4.3.6
20
+ protobuf==5.28.3
21
+ psutil==6.1.0
22
+ PyYAML==6.0.2
23
+ regex==2024.11.6
24
+ requests==2.32.3
25
+ safetensors==0.4.5
26
+ sentry-sdk==2.18.0
27
+ setproctitle==1.3.3
28
+ setuptools==75.5.0
29
+ six==1.16.0
30
+ smmap==5.0.1
31
+ soupsieve==2.6
32
+ sympy==1.13.1
33
+ tokenizers==0.20.3
34
+ torch==2.6.0.dev20241113
35
+ torchaudio==2.5.0.dev20241113
36
+ torchvision==0.20.0.dev20241113
37
+ tqdm==4.67.0
38
+ transformers==4.46.2
39
+ typing_extensions==4.12.2
40
+ urllib3==2.2.3
41
+ wandb==0.18.6
42
+ Wikipedia-API==0.7.1
train.py ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from torch.utils.data import Dataset, DataLoader
5
+ from torch.optim.lr_scheduler import CosineAnnealingLR
6
+ import math
7
+ from tqdm import tqdm
8
+ import json
9
+ from tokenizers import Tokenizer
10
+ from datetime import datetime
11
+ import gc
12
+
13
+ class GPTConfig:
14
+ def __init__(
15
+ self,
16
+ vocab_size=22588,
17
+ n_embd=768, # Reduced from 2048
18
+ n_head=12, # Reduced from 16
19
+ n_layer=8, # Reduced from 12
20
+ dropout=0.1,
21
+ block_size=256, # Reduced from 512
22
+ learning_rate=3e-4,
23
+ max_epochs=50,
24
+ batch_size=8, # Reduced from 64
25
+ grad_clip=1.0,
26
+ ):
27
+ self.vocab_size = vocab_size
28
+ self.n_embd = n_embd
29
+ self.n_head = n_head
30
+ self.n_layer = n_layer
31
+ self.dropout = dropout
32
+ self.block_size = block_size
33
+ self.learning_rate = learning_rate
34
+ self.max_epochs = max_epochs
35
+ self.batch_size = batch_size
36
+ self.grad_clip = grad_clip
37
+
38
+ # Model Architecture
39
+ class SelfAttention(nn.Module):
40
+ def __init__(self, config):
41
+ super().__init__()
42
+ assert config.n_embd % config.n_head == 0
43
+ self.w_k = nn.Linear(config.n_embd, config.n_embd)
44
+ self.w_q = nn.Linear(config.n_embd, config.n_embd)
45
+ self.w_v = nn.Linear(config.n_embd, config.n_embd)
46
+ self.attn_drop = nn.Dropout(config.dropout)
47
+ self.resid_drop = nn.Dropout(config.dropout)
48
+ self.proj = nn.Linear(config.n_embd, config.n_embd)
49
+ self.n_head = config.n_head
50
+ self.n_embd = config.n_embd
51
+
52
+ def forward(self, x):
53
+ B, T, C = x.size()
54
+ k = self.w_k(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
55
+ q = self.w_q(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
56
+ v = self.w_v(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
57
+
58
+ att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
59
+ att = F.softmax(att, dim=-1)
60
+ att = self.attn_drop(att)
61
+ y = att @ v
62
+ y = y.transpose(1, 2).contiguous().view(B, T, C)
63
+ y = self.resid_drop(self.proj(y))
64
+ return y
65
+
66
+ class Block(nn.Module):
67
+ def __init__(self, config):
68
+ super().__init__()
69
+ self.ln1 = nn.LayerNorm(config.n_embd)
70
+ self.attn = SelfAttention(config)
71
+ self.ln2 = nn.LayerNorm(config.n_embd)
72
+ self.mlp = nn.Sequential(
73
+ nn.Linear(config.n_embd, 4 * config.n_embd),
74
+ nn.GELU(),
75
+ nn.Linear(4 * config.n_embd, config.n_embd),
76
+ nn.Dropout(config.dropout),
77
+ )
78
+
79
+ def forward(self, x):
80
+ x = x + self.attn(self.ln1(x))
81
+ x = x + self.mlp(self.ln2(x))
82
+ return x
83
+
84
+ class GPT(nn.Module):
85
+ def __init__(self, config):
86
+ super().__init__()
87
+ self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd)
88
+ self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd))
89
+ self.drop = nn.Dropout(config.dropout)
90
+ self.blocks = nn.ModuleList([Block(config) for _ in range(config.n_layer)])
91
+ self.ln_f = nn.LayerNorm(config.n_embd)
92
+ self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
93
+
94
+ self.block_size = config.block_size
95
+ self.apply(self._init_weights)
96
+
97
+ def _init_weights(self, module):
98
+ if isinstance(module, (nn.Linear, nn.Embedding)):
99
+ module.weight.data.normal_(mean=0.0, std=0.02)
100
+ if isinstance(module, nn.Linear) and module.bias is not None:
101
+ module.bias.data.zero_()
102
+ elif isinstance(module, nn.LayerNorm):
103
+ module.bias.data.zero_()
104
+ module.weight.data.fill_(1.0)
105
+
106
+ def forward(self, idx, targets=None):
107
+ b, t = idx.size()
108
+ assert t <= self.block_size, f"Cannot forward sequence of length {t}, block size is only {self.block_size}"
109
+
110
+ token_embeddings = self.tok_emb(idx)
111
+ position_embeddings = self.pos_emb[:, :t, :]
112
+ x = self.drop(token_embeddings + position_embeddings)
113
+ for block in self.blocks:
114
+ x = block(x)
115
+ x = self.ln_f(x)
116
+ logits = self.head(x)
117
+
118
+ loss = None
119
+ if targets is not None:
120
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
121
+
122
+ return logits, loss
123
+
124
+
125
+ class WikiTextDataset(Dataset):
126
+ def __init__(self, texts, tokenizer, max_length=256): # Reduced max_length
127
+ self.tokenizer = tokenizer
128
+ self.max_length = max_length
129
+
130
+ print("Tokenizing texts...")
131
+ self.examples = []
132
+
133
+ for text in tqdm(texts):
134
+ tokens = self.tokenizer.encode(text).ids
135
+ for i in range(0, len(tokens) - max_length, max_length // 2):
136
+ chunk = tokens[i:i + max_length]
137
+ if len(chunk) < max_length:
138
+ chunk = chunk + [0] * (max_length - len(chunk))
139
+ self.examples.append(chunk)
140
+
141
+ def __len__(self):
142
+ return len(self.examples)
143
+
144
+ def __getitem__(self, idx):
145
+ tokens = self.examples[idx]
146
+ return torch.tensor(tokens[:-1]), torch.tensor(tokens[1:])
147
+
148
+ def train():
149
+ # Clear GPU memory
150
+ torch.cuda.empty_cache()
151
+ gc.collect()
152
+
153
+ print("Loading Wikipedia data...")
154
+ with open('az_wiki_data.json', 'r', encoding='utf-8') as f:
155
+ wiki_data = json.load(f)
156
+
157
+ texts = [page['text'] for page in wiki_data.values()]
158
+ tokenizer = Tokenizer.from_file("az_tokenizer.json")
159
+
160
+ dataset = WikiTextDataset(texts, tokenizer)
161
+ train_size = int(0.9 * len(dataset))
162
+ val_size = len(dataset) - train_size
163
+ train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])
164
+
165
+ config = GPTConfig()
166
+
167
+ train_loader = DataLoader(
168
+ train_dataset,
169
+ batch_size=config.batch_size,
170
+ shuffle=True,
171
+ num_workers=2, # Reduced from 4
172
+ pin_memory=True
173
+ )
174
+
175
+ val_loader = DataLoader(
176
+ val_dataset,
177
+ batch_size=config.batch_size,
178
+ shuffle=False,
179
+ num_workers=2, # Reduced from 4
180
+ pin_memory=True
181
+ )
182
+
183
+ model = GPT(config)
184
+ model = model.to('cuda')
185
+ print(f"Number of parameters: {sum(p.numel() for p in model.parameters())/1e6:.2f}M")
186
+
187
+ optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate)
188
+ scheduler = CosineAnnealingLR(optimizer, T_max=config.max_epochs)
189
+ scaler = torch.amp.GradScaler() # Updated deprecation warning
190
+
191
+ def run_epoch(split, epoch_num=0):
192
+ is_train = split == 'train'
193
+ model.train(is_train)
194
+ if not is_train:
195
+ model.eval()
196
+
197
+ loader = train_loader if is_train else val_loader
198
+ losses = []
199
+
200
+ pbar = tqdm(enumerate(loader), total=len(loader)) if is_train else enumerate(loader)
201
+
202
+ for it, (x, y) in pbar:
203
+ # Clear memory
204
+ torch.cuda.empty_cache()
205
+
206
+ x = x.to('cuda', non_blocking=True)
207
+ y = y.to('cuda', non_blocking=True)
208
+
209
+ with torch.amp.autocast(device_type='cuda'): # Updated deprecation warning
210
+ logits, loss = model(x, y)
211
+
212
+ losses.append(loss.item())
213
+
214
+ if is_train:
215
+ scaler.scale(loss).backward()
216
+ scaler.unscale_(optimizer)
217
+ torch.nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip)
218
+ scaler.step(optimizer)
219
+ scaler.update()
220
+ optimizer.zero_grad(set_to_none=True)
221
+
222
+ pbar.set_description(f"epoch {epoch_num+1} iter {it}: train loss {loss.item():.5f}")
223
+
224
+ # Delete unnecessary tensors
225
+ del x, y, logits
226
+ if is_train:
227
+ del loss
228
+
229
+ mean_loss = torch.tensor(losses).mean().item()
230
+ return mean_loss
231
+
232
+ best_val_loss = float('inf')
233
+
234
+ try:
235
+ for epoch in range(config.max_epochs):
236
+ print(f"\nEpoch {epoch+1}/{config.max_epochs}")
237
+
238
+ train_loss = run_epoch('train', epoch_num=epoch)
239
+
240
+ with torch.no_grad():
241
+ val_loss = run_epoch('val')
242
+
243
+ scheduler.step()
244
+
245
+ if val_loss < best_val_loss:
246
+ best_val_loss = val_loss
247
+ print(f"Saving best model with val_loss: {val_loss:.4f}")
248
+ torch.save(model.state_dict(), 'best_model.pt')
249
+
250
+ print(f"Epoch {epoch+1}: train_loss: {train_loss:.4f}, val_loss: {val_loss:.4f}")
251
+
252
+ if (epoch + 1) % 5 == 0:
253
+ torch.save({
254
+ 'epoch': epoch,
255
+ 'model_state_dict': model.state_dict(),
256
+ 'optimizer_state_dict': optimizer.state_dict(),
257
+ 'scheduler_state_dict': scheduler.state_dict(),
258
+ 'train_loss': train_loss,
259
+ 'val_loss': val_loss,
260
+ }, f'checkpoint_epoch_{epoch+1}.pt')
261
+
262
+ except KeyboardInterrupt:
263
+ print('Training interrupted, saving checkpoint...')
264
+ torch.save({
265
+ 'epoch': epoch,
266
+ 'model_state_dict': model.state_dict(),
267
+ 'optimizer_state_dict': optimizer.state_dict(),
268
+ 'scheduler_state_dict': scheduler.state_dict(),
269
+ 'train_loss': train_loss,
270
+ 'val_loss': val_loss,
271
+ }, 'interrupt_checkpoint.pt')
272
+
273
+ if __name__ == '__main__':
274
+ train()