File size: 1,095 Bytes
3cdd624
6a11c9a
ad8f797
61d68d7
6a11c9a
ad8f797
9480619
 
ad8f797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
786de25
 
ec82a77
e8e1f22
8e10f98
3cdd624
3b401dd
6a11c9a
87fd284
6a11c9a
04a29db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
language:
- en
license: mit
tags:
- finance
pipeline_tag: text-generation
widget:
- example_title: Easy
  text: '<|user|>

    How do call options benefit the buyer?

    <|assistant|>

    '
- example_title: Medium
  text: '<|user|>

    Why might a trader choose to quickly exit a losing position, even if they still
    believe in the original trade idea?

    <|assistant|>

    '
- example_title: Hard
  text: '<|user|>

    In the context of Harry Markowitz''s Portfolio Selection theory, what does an
    ''efficient'' portfolio refer to?

    <|assistant|>

    '
inference:
  parameters:
    temperature: 0.2
    min_new_tokens: 20
    max_new_tokens: 250
---
# AlphaBlind Tiny v0.001

Our Proof-of-Concept (POC) for the LLM-ADE framework (https://arxiv.org/abs/2404.13028). A very early, initial version of TinyLlama processing and ingesting llm-ade-fin_data-subset-earnings-10k and other financial data with the LLM-ADE framework.

Note: This model has not been thoroughly tested, and is very small - it can run on a Macbook Pro. Please do not use this version of the model as is.