--- language: en license: apache-2.0 datasets: - nyu-mll/glue --- # EFTNAS Model Card: eftnas-s1-bert-base The super-networks fine-tuned on BERT-base with [GLUE benchmark](https://gluebenchmark.com/) using EFTNAS. ## Model Details ### Information - **Model name:** eftnas-s1-bert-base-[TASK] - **Base model:** [bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) - **Subnetwork version:** Super-network - **NNCF Configurations:** [eftnas_configs](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/EFTNAS/eftnas_configs) ### Training and Evaluation [GLUE benchmark](https://gluebenchmark.com/) ## Results Results of the optimal sub-network discoverd from the super-network: | Model | GFLOPs | GLUE Avg. | MNLI-m | QNLI | QQP | SST-2 | CoLA | MRPC | RTE | |-------------------------------|-----------|---------------|----------|------|----------|----------|----------|----------|------| | **Development Set:** | | **EFTNAS-S1** | 5.7 | 82.9 | 84.6 | 90.8 | 91.2 | 93.5 | 60.6 | 90.8 | 69.0 | | **Test Set:** | | **EFTNAS-S1** | 5.7 | 77.7 | 83.7 | 89.9 | 71.8 | 93.4 | 52.6 | 87.6 | 65.0 | ## Model Sources - **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/EFTNAS](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/EFTNAS) - **Paper:** [Searching for Efficient Language Models in First-Order Weight-Reordered Super-Networks]() ## Citation ```bibtex @inproceedings{ eftnas2024, title={Searching for Efficient Language Models in First-Order Weight-Reordered Super-Networks}, author={J. Pablo Munoz and Yi Zheng and Nilesh Jain}, booktitle={The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation}, year={2024}, url={} } ``` ## License Apache-2.0