File size: 4,417 Bytes
7638119
 
 
c467002
31af3c3
c467002
31af3c3
c467002
 
27688f3
c467002
 
 
050b53d
c467002
70b518b
 
 
 
c467002
 
 
 
 
 
 
 
 
 
 
7da01a4
 
 
c467002
7da01a4
c467002
7cc4991
 
c467002
 
2382cb8
 
 
735bc4c
2382cb8
 
 
 
 
 
 
 
 
af71dde
c467002
 
af71dde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c467002
 
 
 
 
 
001cba8
c467002
 
 
 
 
 
 
af71dde
c467002
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
license: apache-2.0
---

## Fine-tuning on Intel Gaudi2

This model is a fine-tuned model based on [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the open source dataset [Open-Orca/SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca). Then we align it with DPO algorithm. For more details, you can refer our blog: [The Practice of Supervised Fine-tuning and Direct Preference Optimization on Intel Gaudi2](https://medium.com/@NeuralCompressor/the-practice-of-supervised-finetuning-and-direct-preference-optimization-on-habana-gaudi2-a1197d8a3cd3).

## Model date
Neural-chat-7b-v3 was trained between September and October, 2023.

## Evaluation

We submit our model to [open_llm_leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), and the model performance has been **improved significantly** as we see from the average metric of 7 tasks from the leaderboard.

| Model | Average ⬆️| ARC (25-s) ⬆️ | HellaSwag (10-s) ⬆️ | MMLU (5-s) ⬆️| TruthfulQA (MC) (0-s) ⬆️ | Winogrande (5-s) | GSM8K (5-s) | DROP (3-s) |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
|[mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 50.32 | 59.58  | 83.31  | 64.16  | 42.15 | 78.37 | 18.12 | 6.14 |
| **Ours** | **57.31** | 67.15 | 83.29 | 62.26  | 58.77 | 78.06 | 1.21 | 50.43 |


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-04
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-HPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2.0


## Prompt Template

```
### System:
{system}
### User:
{usr}
### Assistant:

```


## FP32 Inference with transformers

```shell
from transformers import AutoTokenizer, TextStreamer
model_name = "Intel/neural-chat-7b-v3"     
prompt = "Once upon a time, there existed a little girl,"

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
inputs = tokenizer(prompt, return_tensors="pt").input_ids
streamer = TextStreamer(tokenizer)

model = AutoModelForCausalLM.from_pretrained(model_name)
outputs = model.generate(inputs, streamer=streamer, max_new_tokens=300)
)
```

## INT4 Inference with transformers

```shell
from transformers import AutoTokenizer, TextStreamer
from intel_extension_for_transformers.transformers import AutoModelForCausalLM, WeightOnlyQuantConfig
model_name = "Intel/neural-chat-7b-v3"     
config = WeightOnlyQuantConfig(compute_dtype="int8", weight_dtype="int4")
prompt = "Once upon a time, there existed a little girl,"

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
inputs = tokenizer(prompt, return_tensors="pt").input_ids
streamer = TextStreamer(tokenizer)

model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=config)
outputs = model.generate(inputs, streamer=streamer, max_new_tokens=300)
)
```

## Ethical Considerations and Limitations
neural-chat-7b-v3 can produce factually incorrect output, and should not be relied on to produce factually accurate information. neural-chat-7b-v3 was trained on [Open-Orca/SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca) based on [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1). Because of the limitations of the pretrained model and the finetuning datasets, it is possible that this model could generate lewd, biased or otherwise offensive outputs.

Therefore, before deploying any applications of neural-chat-7b-v3, developers should perform safety testing.

## Disclaimer

The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.

## Organizations developing the model

The NeuralChat team with members from Intel/DCAI/AISE. Core team members: Kaokao Lv, Liang Lv, Chang Wang, Wenxin Zhang, Xuhui Ren, and Haihao Shen.

## Useful links
* Intel Neural Compressor [link](https://github.com/intel/neural-compressor)
* Intel Extension for Transformers [link](https://github.com/intel/intel-extension-for-transformers)