--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert-base-uncased-mrpc results: - task: type: text-classification name: Text Classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - type: accuracy value: 0.8602941176470589 name: Accuracy - type: f1 value: 0.9042016806722689 name: F1 - task: type: natural-language-inference name: Natural Language Inference dataset: name: glue type: glue config: mrpc split: validation metrics: - type: accuracy value: 0.8602941176470589 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWMzOWFiNmZjY2ZjMzYzYjk2YjA2ZTc0NjBmYmRlMWM4YWQwMzczYmU0NjcxNjU4YWNhMGMxMjQxNmEwNzM3NSIsInZlcnNpb24iOjF9.5c8Um2j-oDEviTR2S_mlrjQU2Z5zEIgoEldxU6NpIGkM22WhGRMmuCUlkPEpy1q2-HsA4Lz16SAF2bXOXZMqBw - type: precision value: 0.8512658227848101 name: Precision verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzA0MjM4OGYyYmNhYTU3OTBmNzE3YzViNzQyZTk2NmJiODE2NGJkZGVlMTYxZGQzOWE1YTRkZjZmNjI5ODljNyIsInZlcnNpb24iOjF9.mzDbq7IbSFWnlR6jV-KwuNhOrqnuZVVQX38UzQVClox6O1DRmxAFuo3wmSYBEEaydGipdDN1FAkLXDyZP4LFBg - type: recall value: 0.96415770609319 name: Recall verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDMxMzUyZDVhNGM0ZTk3NjUxYTVlYmRjYjMxZTY3NjEzZmU5YzA5NTRmZTM3YTU1MjE3MzBmYjA1NzhkNjJlYSIsInZlcnNpb24iOjF9.WxpDTp5ANy97jjbzn4BOeQc5A5JJsyK2NQDv651v7J8AHrt_Srvy5lVia_gyWgqt4bI-ZpPPmBCCCP9MdOhdBw - type: auc value: 0.8985718651885194 name: AUC verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWE3ZDc1ZWMwY2RmZmM4ZjQyY2RiMGJjMzFmNmNjNzVmMzE4Y2FlMzJjNzk0MTI3YjdkMTY5ZDg3ZGZjMGFkNSIsInZlcnNpb24iOjF9.PiS1glSDlAM9r7Pvu0FdTCdx45Dr_IDe7TRuZD8QhJzKw__H-Lil5bkBW-FsoN6hKQe80-qtuhLhvLwlZPORCA - type: f1 value: 0.9042016806722689 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2FiOTY2MDI1ZDcyYjE3OGVjOGJjOTc3NGRiODgwNzQxNTEzOGM4YTJhMDE0NjRlNjg1ODk0YzM5YTY0NTQxYSIsInZlcnNpb24iOjF9.gz3szT-MroNcsPhMznhg0kwgWsIa1gfJi8vrhcFMD0PK6djlvZIVKoAS2QE-1cgqPMph7AJXTLifQuPgPBQLDA - type: loss value: 0.6978028416633606 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDZjODM1NGYyZWMyNDQxOTg0ODkxODgyODcxMzRlZTVjMTc5YjU3MDJmMGMzYzczZDU1Y2NjNTYwYjM2MDEzZiIsInZlcnNpb24iOjF9.eNSy3R0flowu2c4OEAv9rayTQI4YluNN-AuXKzBJM6KPASzuVOD6vTElHMptXiJWc-2tfHJw6CdvyAQSEGTaBg --- # bert-base-uncased-mrpc This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the **GLUE MRPC dataset**. It is a pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in this paper and first released in this repository. This model is uncased: it does not make a difference between **"english"** and **"English"**. BERT base model (uncased) It provides: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally masks the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. # Results It achieves the following results on the evaluation set: - Loss: 0.6978 - Accuracy: 0.8603 - F1: 0.9042 - Combined Score: 0.8822 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu102 - Datasets 1.14.0 - Tokenizers 0.11.6 - # To use: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('Intel/bert-base-uncased-mrpc') model = BertModel.from_pretrained("Intel/bert-base-uncased-mrpc") # text = "according to the theory of aerodynamics and wind tunnel experiments the bumble bee is unable to fly. This is bcause the size, weight, and shape of his body in relation to total wingspread makes flying impossible. But, the bumble bee being ignorant of these pround scientific truths goes ahead and flies anyway, and manages to make a little honey everyday." text = "The inspector analyzed the soundness in the building." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) # print BaseModelOutputWithPoolingAndCrossAttentions and pooler_output # output similar to: ``` BaseModelOutputWithPoolingAndCrossAttentions(last_hidden_state=tensor([[[ 0.0219, 0.1258, -0.8529, ..., 0.6416, 0.6275, 0.5583], [ 0.3125, -0.1921, -0.9895, ..., 0.6069, 1.8431, -0.5939], [ 0.6147, -0.6098, -0.3517, ..., -0.1145, 1.1748, -0.7104], ..., [ 0.8959, -0.2324, -0.6311, ..., 0.2424, 0.1025, 0.2101], [ 0.2484, -0.3004, -0.9474, ..., 1.0401, 0.5493, -0.4170], [ 0.8206, 0.2023, -0.7929, ..., 0.7073, 0.0779, -0.2781]]], grad_fn=), pooler_output=tensor([[-0.7867, 0.1878, -0.8186, 0.8494, 0.4263, 0.5157, 0.9564, 0.1514, -0.9176, -0.9994, 0.2962, 0.2891, -0.3301, 0.8786, 0.9234, -0.7643, 0.2487, -0.5245, -0.0649, -0.6722, 0.8550, 1.0000, -0.7785, 0.5322, 0.6056, 0.4622, 0.2838, 0.5501, 0.6981, 0.2597, -0.7896, -0.1189, ```python # Print tokens * ids in of inmput string below print('Tokenized Text: ', tokenizer.tokenize(text), '\n') print('Token IDs: ', tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))) #Print tokens in text encoded_input['input_ids'][0] tokenizer.convert_ids_to_tokens(encoded_input['input_ids'][0]) ```