PhillipHoward commited on
Commit
73bea18
·
verified ·
1 Parent(s): 6cf60a9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -97
README.md CHANGED
@@ -13,104 +13,9 @@ NeuroPrompts was accepted to EACL 2024.
13
 
14
  ## Usage
15
 
16
- ```shell script
17
- pip install torch torchvision gradio==3.39.0 transformers diffusers flair==0.12.2 numpy tqdm webdataset pytorch_lightning datasets openai-clip scipy==1.10.1
18
- ```
19
-
20
- ```python
21
- import torch
22
- from transformers import AutoModelForCausalLM, AutoTokenizer
23
- import sys
24
- import os
25
- # from categories import styles_list, artists_list, formats_list, perspective_list, booster_list, vibe_list
26
-
27
-
28
- # Set environment variables and PyTorch configurations
29
- os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
30
- torch.backends.cudnn.benchmark = False
31
- torch.use_deterministic_algorithms(True)
32
-
33
-
34
- # Set the path for the 'neurologic' module
35
- neurologic_path = os.path.abspath('neurologic/')
36
- os.environ['NEUROLOGIC_PATH'] = neurologic_path
37
- sys.path.insert(0,neurologic_path)
38
- from neurologic_pe import generate_neurologic
39
-
40
- # Load the pre-trained model and tokenizer
41
- model_name = "Intel/NeuroPrompts"
42
- model_type = 'finetuned'
43
- # model_type = 'ppo'
44
- rand_seed = 1535471403
45
-
46
-
47
- model = AutoModelForCausalLM.from_pretrained(model_name).to('cuda')
48
- tokenizer = AutoTokenizer.from_pretrained(model_name)
49
- tokenizer.pad_token = tokenizer.eos_token
50
-
51
-
52
- # Set the inference parameters
53
- length_penalty = 1.0
54
- max_length = 77
55
- beam_size = 5
56
- inference_steps = 25
57
-
58
-
59
- # Initialize the input constraints
60
- curr_input_artist = None
61
- curr_input_style = None
62
- curr_input_format = None
63
- curr_input_perspective = None
64
- curr_input_booster = None
65
- curr_input_vibe = None
66
- curr_input_negative = ""
67
-
68
-
69
- # Set the plain text input
70
- plain_text = "A boy and his dog"
71
-
72
-
73
- # Construct the positive and negative constraints
74
- constraints = []
75
- for clause in [curr_input_artist, curr_input_style, curr_input_format, curr_input_perspective, curr_input_booster, curr_input_vibe]:
76
- if clause is not None and len(clause) > 0:
77
- constraints.append([clause.lower(), clause.title()])
78
-
79
- print(f"Positive constraints:{constraints}")
80
-
81
-
82
- neg_constraints = []
83
- neg_inputs = [i.strip() for i in curr_input_negative.split(',')]
84
- for clause in neg_inputs:
85
- if clause is not None and len(clause) > 0:
86
- neg_constraints += [clause.lower(), clause.title()]
87
-
88
- print(f"Negative constraints:{neg_constraints}")
89
-
90
-
91
-
92
- # Generate the output using the 'generate_neurologic' function
93
- res = generate_neurologic(plain_text,
94
- model=model,
95
- tokenizer=tokenizer,
96
- model_type=model_type,
97
- constraint_method='clusters',
98
- clusters_file='/home/philliph/mcai/mm-counterfactuals/prompt_engineering/template_keywords.json',
99
- user_constraints = constraints if len(constraints) > 0 else None,
100
- negative_constraints = neg_constraints if len(neg_constraints) > 0 else None,
101
- length_penalty=float(length_penalty),
102
- max_tgt_length=int(max_length),
103
- beam_size=int(beam_size),
104
- num_return_sequences=int(beam_size),
105
- ngram_size=2,
106
- n_per_cluster=1,
107
- seed=None)[0][0]
108
-
109
-
110
-
111
- # Print the result
112
- print(f"\nResult:\n{res}")
113
 
 
114
 
115
 
116
 
 
13
 
14
  ## Usage
15
 
16
+ This model is inteded to be used within the NeuroPrompts application.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ Please see our GitHub repository for instructions on how to run NeuroPrompts: https://github.com/IntelLabs/multimodal_cognitive_ai/tree/main/Demos/NeuroPrompts
19
 
20
 
21