shacharrosenman
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# NeuroPrompts Model Card
|
2 |
+
|
3 |
+
NeuroPrompts is an interface to Stable Diffusion which automatically optimizes a user’s prompt for improved image aesthetics while maintaining stylistic control according to the user’s preferences.
|
4 |
+
Preprint: [arxiv.org/abs/2311.12229](https://arxiv.org/abs/2311.12229)
|
5 |
+
|
6 |
+
NeuroPrompts was accepted to EACL 2024.
|
7 |
+
|
8 |
+
## The interface of NeuroPrompts in side-by-side comparison mode
|
9 |
+
|
10 |
+
![NeuroPrompts overview](images/comparisons_interface.png)
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
## Usage
|
15 |
+
|
16 |
+
```shell script
|
17 |
+
pip install torch torchvision gradio==3.39.0 transformers diffusers flair==0.12.2 numpy tqdm webdataset pytorch_lightning datasets openai-clip scipy==1.10.1
|
18 |
+
```
|
19 |
+
|
20 |
+
```python
|
21 |
+
import torch
|
22 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
23 |
+
import sys
|
24 |
+
import os
|
25 |
+
# from categories import styles_list, artists_list, formats_list, perspective_list, booster_list, vibe_list
|
26 |
+
|
27 |
+
|
28 |
+
# Set environment variables and PyTorch configurations
|
29 |
+
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
|
30 |
+
torch.backends.cudnn.benchmark = False
|
31 |
+
torch.use_deterministic_algorithms(True)
|
32 |
+
|
33 |
+
|
34 |
+
# Set the path for the 'neurologic' module
|
35 |
+
neurologic_path = os.path.abspath('neurologic/')
|
36 |
+
os.environ['NEUROLOGIC_PATH'] = neurologic_path
|
37 |
+
sys.path.insert(0,neurologic_path)
|
38 |
+
from neurologic_pe import generate_neurologic
|
39 |
+
|
40 |
+
# Load the pre-trained model and tokenizer
|
41 |
+
model_name = "/home/srosenma/src/test_45"
|
42 |
+
model_type = 'finetuned'
|
43 |
+
# model_type = 'ppo'
|
44 |
+
rand_seed = 1535471403
|
45 |
+
|
46 |
+
|
47 |
+
model = AutoModelForCausalLM.from_pretrained(model_name).to('cuda')
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
49 |
+
tokenizer.pad_token = tokenizer.eos_token
|
50 |
+
|
51 |
+
|
52 |
+
# Set the inference parameters
|
53 |
+
length_penalty = 1.0
|
54 |
+
max_length = 77
|
55 |
+
beam_size = 5
|
56 |
+
inference_steps = 25
|
57 |
+
|
58 |
+
|
59 |
+
# Initialize the input constraints
|
60 |
+
curr_input_artist = None
|
61 |
+
curr_input_style = None
|
62 |
+
curr_input_format = None
|
63 |
+
curr_input_perspective = None
|
64 |
+
curr_input_booster = None
|
65 |
+
curr_input_vibe = None
|
66 |
+
curr_input_negative = ""
|
67 |
+
|
68 |
+
|
69 |
+
# Set the plain text input
|
70 |
+
plain_text = "A boy and his dog"
|
71 |
+
|
72 |
+
|
73 |
+
# Construct the positive and negative constraints
|
74 |
+
constraints = []
|
75 |
+
for clause in [curr_input_artist, curr_input_style, curr_input_format, curr_input_perspective, curr_input_booster, curr_input_vibe]:
|
76 |
+
if clause is not None and len(clause) > 0:
|
77 |
+
constraints.append([clause.lower(), clause.title()])
|
78 |
+
|
79 |
+
print(f"Positive constraints:{constraints}")
|
80 |
+
|
81 |
+
|
82 |
+
neg_constraints = []
|
83 |
+
neg_inputs = [i.strip() for i in curr_input_negative.split(',')]
|
84 |
+
for clause in neg_inputs:
|
85 |
+
if clause is not None and len(clause) > 0:
|
86 |
+
neg_constraints += [clause.lower(), clause.title()]
|
87 |
+
|
88 |
+
print(f"Negative constraints:{neg_constraints}")
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
# Generate the output using the 'generate_neurologic' function
|
93 |
+
res = generate_neurologic(plain_text,
|
94 |
+
model=model,
|
95 |
+
tokenizer=tokenizer,
|
96 |
+
model_type=model_type,
|
97 |
+
constraint_method='clusters',
|
98 |
+
clusters_file='/home/philliph/mcai/mm-counterfactuals/prompt_engineering/template_keywords.json',
|
99 |
+
user_constraints = constraints if len(constraints) > 0 else None,
|
100 |
+
negative_constraints = neg_constraints if len(neg_constraints) > 0 else None,
|
101 |
+
length_penalty=float(length_penalty),
|
102 |
+
max_tgt_length=int(max_length),
|
103 |
+
beam_size=int(beam_size),
|
104 |
+
num_return_sequences=int(beam_size),
|
105 |
+
ngram_size=2,
|
106 |
+
n_per_cluster=1,
|
107 |
+
seed=None)[0][0]
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
# Print the result
|
112 |
+
print(f"\nResult:\n{res}")
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
```
|
118 |
+
|