etrop's picture
ESM Config and Model definition script
4f8c857
raw
history blame
14.9 kB
# coding=utf-8
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ESM model configuration"""
from dataclasses import asdict, dataclass
from typing import Optional
from transformers import PretrainedConfig, logging
logger = logging.get_logger(__name__)
# TODO Update this
ESM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json",
# See all ESM models at https://huggingface.co/models?filter=esm
}
class EsmConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ESMModel`]. It is used to instantiate a ESM model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the ESM
[facebook/esm-1b](https://huggingface.co/facebook/esm-1b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*):
Vocabulary size of the ESM model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`ESMModel`].
mask_token_id (`int`, *optional*):
The index of the mask token in the vocabulary. This must be included in the config because of the
"mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens.
pad_token_id (`int`, *optional*):
The index of the padding token in the vocabulary. This must be included in the config because certain parts
of the ESM code use this instead of the attention mask.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 1026):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`.
For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
is_decoder (`bool`, *optional*, defaults to `False`):
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
emb_layer_norm_before (`bool`, *optional*):
Whether to apply layer normalization after embeddings but before the main stem of the network.
token_dropout (`bool`, defaults to `False`):
When this is enabled, masked tokens are treated as if they had been dropped out by input dropout.
Examples:
```python
>>> from transformers import EsmModel, EsmConfig
>>> # Initializing a ESM facebook/esm-1b style configuration >>> configuration = EsmConfig()
>>> # Initializing a model from the configuration >>> model = ESMModel(configuration)
>>> # Accessing the model configuration >>> configuration = model.config
```"""
model_type = "esm"
def __init__(
self,
vocab_size=None,
mask_token_id=None,
pad_token_id=None,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=1026,
initializer_range=0.02,
layer_norm_eps=1e-12,
position_embedding_type="absolute",
use_cache=True,
emb_layer_norm_before=None,
token_dropout=False,
is_folding_model=False,
esmfold_config=None,
vocab_list=None,
add_bias_fnn=True,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs
)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.emb_layer_norm_before = emb_layer_norm_before
self.token_dropout = token_dropout
self.is_folding_model = is_folding_model
# Arguments needed for Dalmatian
self.add_bias_fnn = add_bias_fnn
if is_folding_model:
if esmfold_config is None:
logger.info(
"No esmfold_config supplied for folding model, using default values."
)
esmfold_config = EsmFoldConfig()
elif isinstance(esmfold_config, dict):
esmfold_config = EsmFoldConfig(**esmfold_config)
self.esmfold_config = esmfold_config
if vocab_list is None:
logger.warning(
"No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!"
)
self.vocab_list = get_default_vocab_list()
else:
self.vocab_list = vocab_list
else:
self.esmfold_config = None
self.vocab_list = None
if self.esmfold_config is not None and getattr(
self.esmfold_config, "use_esm_attn_map", False
):
raise ValueError(
"The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!"
)
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = super().to_dict()
if isinstance(self.esmfold_config, EsmFoldConfig):
output["esmfold_config"] = self.esmfold_config.to_dict()
return output
@dataclass
class EsmFoldConfig:
esm_type: str = None
fp16_esm: bool = True
use_esm_attn_map: bool = False
esm_ablate_pairwise: bool = False
esm_ablate_sequence: bool = False
esm_input_dropout: float = 0
embed_aa: bool = True
bypass_lm: bool = False
lddt_head_hid_dim: int = 128
trunk: "TrunkConfig" = None
def __post_init__(self):
if self.trunk is None:
self.trunk = TrunkConfig()
elif isinstance(self.trunk, dict):
self.trunk = TrunkConfig(**self.trunk)
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = asdict(self)
output["trunk"] = self.trunk.to_dict()
return output
@dataclass
class TrunkConfig:
num_blocks: int = 48
sequence_state_dim: int = 1024
pairwise_state_dim: int = 128
sequence_head_width: int = 32
pairwise_head_width: int = 32
position_bins: int = 32
dropout: float = 0
layer_drop: float = 0
cpu_grad_checkpoint: bool = False
max_recycles: int = 4
chunk_size: Optional[int] = 128
structure_module: "StructureModuleConfig" = None
def __post_init__(self):
if self.structure_module is None:
self.structure_module = StructureModuleConfig()
elif isinstance(self.structure_module, dict):
self.structure_module = StructureModuleConfig(**self.structure_module)
if self.max_recycles <= 0:
raise ValueError(
f"`max_recycles` should be positive, got {self.max_recycles}."
)
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
"`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got"
f" {self.sequence_state_dim} and {self.sequence_state_dim}."
)
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
"`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got"
f" {self.pairwise_state_dim} and {self.pairwise_state_dim}."
)
sequence_num_heads = self.sequence_state_dim // self.sequence_head_width
pairwise_num_heads = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
"`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got"
f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}."
)
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
"`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got"
f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}."
)
if self.pairwise_state_dim % 2 != 0:
raise ValueError(
f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}."
)
if self.dropout >= 0.4:
raise ValueError(
f"`dropout` should not be greater than 0.4, got {self.dropout}."
)
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = asdict(self)
output["structure_module"] = self.structure_module.to_dict()
return output
@dataclass
class StructureModuleConfig:
"""
Args:
sequence_dim:
Single representation channel dimension
pairwise_dim:
Pair representation channel dimension
ipa_dim:
IPA hidden channel dimension
resnet_dim:
Angle resnet (Alg. 23 lines 11-14) hidden channel dimension
num_heads_ipa:
Number of IPA heads
num_qk_points:
Number of query/key points to generate during IPA
num_v_points:
Number of value points to generate during IPA
dropout_rate:
Dropout rate used throughout the layer
num_blocks:
Number of structure module blocks
num_transition_layers:
Number of layers in the single representation transition (Alg. 23 lines 8-9)
num_resnet_blocks:
Number of blocks in the angle resnet
num_angles:
Number of angles to generate in the angle resnet
trans_scale_factor:
Scale of single representation transition hidden dimension
epsilon:
Small number used in angle resnet normalization
inf:
Large number used for attention masking
"""
sequence_dim: int = 384
pairwise_dim: int = 128
ipa_dim: int = 16
resnet_dim: int = 128
num_heads_ipa: int = 12
num_qk_points: int = 4
num_v_points: int = 8
dropout_rate: float = 0.1
num_blocks: int = 8
num_transition_layers: int = 1
num_resnet_blocks: int = 2
num_angles: int = 7
trans_scale_factor: int = 10
epsilon: float = 1e-8
inf: float = 1e5
def to_dict(self):
return asdict(self)
def get_default_vocab_list():
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)