File size: 2,350 Bytes
0c9e835 06e689b 0c9e835 06e689b a7957d5 06e689b c2889d8 06e689b 4750622 06e689b 290e02a 06e689b 290e02a 06e689b 4750622 fc673dc 93d69c3 fc673dc 06e689b b329f0a 06e689b 7b3a3e9 96294f1 b329f0a 7b3a3e9 9a0007b b329f0a a7957d5 beef182 a7957d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
language:
- en
---
# FILM-7B
<p align="center">
π» <a href="https://github.com/microsoft/FILM/" target="_blank">[Github Repo]</a> β’ π <a href="https://arxiv.org/abs/2404.16811" target="_blank">[Paper]</a> β’ β <a href="https://huggingface.co/datasets/In2Training/VaLProbing-32K" target="_blank">[VaLProbing-32K] </a>
</p>
**FILM-7B is a 32K-context LLM that overcomes the lost-in-the-middle problem.**
It is trained from Mistral-7B-Instruct-v0.2 by applying Information-Intensie (In2) Training.
FILM-7B achieves near-perfect performance on probing tasks, SOTA-level performance on real-world long-context tasks among ~7B size LLMs, and does not compromise the short-context performance.
## Model Usage
The system tempelate for FILM-7B:
```text
'''[INST] Below is a context and an instruction. Based on the information provided in the context, write a response for the instruction.
### Context:
{YOUR LONG CONTEXT}
### Instruction:
{YOUR QUESTION & INSTRUCTION} [/INST]
'''
```
## Probing Results
To reproduce the results on our VaL Probing, see the guidance in [https://github.com/microsoft/FILM/tree/main/VaLProbing](https://github.com/microsoft/FILM/tree/main/VaLProbing).
<p align="center">
<img src="./figures/probing_results_new.png" width="800">
<br>
</p>
## Real-World Long-Context Tasks
To reproduce the results on real-world long-context tasks, see the guidance in [https://github.com/microsoft/FILM/tree/main/real_world_long](https://github.com/microsoft/FILM/tree/main/real_world_long).
<p align="center">
<img src="./figures/real_world_long.png" width="800">
<br>
</p>
## Short-Context Tasks
To reproduce the results on short-context tasks, see the guidance in [https://github.com/microsoft/FILM/tree/main/short_tasks](https://github.com/microsoft/FILM/tree/main/short_tasks).
<p align="center">
<img src="./figures/short.png" width="800">
<br>
</p>
## π Citation
```
@misc{an2024make,
title={Make Your LLM Fully Utilize the Context},
author={Shengnan An and Zexiong Ma and Zeqi Lin and Nanning Zheng and Jian-Guang Lou},
year={2024},
eprint={2404.16811},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
Disclaimer: This model is strictly for research purposes, and not an official product or service from Microsoft.
|