File size: 2,752 Bytes
75a9408 331c6a3 aa90ee7 331c6a3 75a9408 92de5a1 75a9408 92de5a1 75a9408 92de5a1 9fc3051 92de5a1 75a9408 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
base_model: unsloth/mistral-7b-v0.3-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
---
<div class="alert alert-block alert-danger">
<h2><center><strong>Mental Health Chatbot using Fine-Tuned 7B Mistral Model</strong></center></h2>
</div>
## Inference
```python
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "ImranzamanML/7B_finetuned_Mistral",
max_seq_length = 5020,
dtype = None,
load_in_4bit = True)
```
## Using this text to feed into model for getting the response
text="I'm going through some things with my feelings and myself. I barely sleep and I do nothing but think about how I'm worthless and how I shouldn't be here. I've never tried or contemplated suicide. I've always wanted to fix my issues, but I never get around to it. How can I change my feeling of being worthless to everyone?"
<div style="background-color: #f2f2f2; border-left: 5px solid #4CAF50; padding: 15px; margin: 20px 0;">
<strong>Note:</strong> Lets use the fine-tuned model for inference in order to generate responses based on mental health-related prompts !
</div>
<h3 style="color: #388e3c; font-family: Arial, sans-serif;">Here is some keys to note:</h3>
<ol style="margin-left: 20px;">
<p>The <code>model = FastLanguageModel.for_inference(model)</code> configures the model specifically for inference, optimizing its performance for generating responses.</p>
</li>
<p>The input text is tokenized using the <code>tokenizer</code>, it convert the text into a format that model can process. We are using <code>data_prompt</code> to format the input text, while the response placeholder is left empty to get response from model. The <code>return_tensors = "pt"</code> parameter specifies that the output should be in PyTorch tensors, which are then moved to the GPU using <code>.to("cuda")</code> for faster processing.</p>
</li>
<p>The <code>model.generate</code> method generating response based on the tokenized inputs. The parameters <code>max_new_tokens = 5020</code> and <code>use_cache = True</code> ensure that the model can produce long and coherent responses efficiently by utilizing cached computation from previous layers.</p>
</li>
</ol>
```python
model = FastLanguageModel.for_inference(model)
inputs = tokenizer(
[
data_prompt.format(
#instructions
text,
#answer
"",
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 5020, use_cache = True)
answer=tokenizer.batch_decode(outputs)
answer = answer[0].split("### Response:")[-1]
print("Answer of the question is:", answer)
```
|