IProject-10 commited on
Commit
8aef9de
·
1 Parent(s): fc1a052

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -16
README.md CHANGED
@@ -8,30 +8,72 @@ datasets:
8
  model-index:
9
  - name: deberta-base-finetuned-squad2
10
  results: []
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
  should probably proofread and complete it, then remove this comment. -->
15
 
16
- # deberta-base-finetuned-squad2
17
-
18
- This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the squad_v2 dataset.
19
- It achieves the following results on the evaluation set:
20
- - Loss: 0.9334
21
-
22
  ## Model description
23
 
24
- More information needed
25
-
26
- ## Intended uses & limitations
 
27
 
28
- More information needed
 
 
 
 
 
29
 
30
- ## Training and evaluation data
31
-
32
- More information needed
33
 
34
- ## Training procedure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  ### Training hyperparameters
37
 
@@ -52,10 +94,13 @@ The following hyperparameters were used during training:
52
  | 0.5368 | 2.0 | 16476 | 0.7901 |
53
  | 0.3845 | 3.0 | 24714 | 0.9334 |
54
 
55
-
 
 
 
56
  ### Framework versions
57
 
58
  - Transformers 4.31.0
59
  - Pytorch 2.0.1+cu118
60
  - Datasets 2.14.3
61
- - Tokenizers 0.13.3
 
8
  model-index:
9
  - name: deberta-base-finetuned-squad2
10
  results: []
11
+ language:
12
+ - en
13
+ metrics:
14
+ - exact_match
15
+ - f1
16
+ pipeline_tag: question-answering
17
  ---
18
 
19
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
20
  should probably proofread and complete it, then remove this comment. -->
21
 
 
 
 
 
 
 
22
  ## Model description
23
 
24
+ DeBERTabase fine-tuned on SQuAD 2.0 : Encoder-based Transformer Language model.
25
+ DeBERTa improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder.
26
+ It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data.<br>
27
+ Suitable for Question-Answering tasks, predicts answer spans within the context provided.<br>
28
 
29
+ **Language model:** microsoft/deberta-base
30
+ **Language:** English
31
+ **Downstream-task:** Question-Answering
32
+ **Training data:** Train-set SQuAD 2.0
33
+ **Evaluation data:** Evaluation-set SQuAD 2.0
34
+ **Hardware Accelerator used**: GPU Tesla T4
35
 
36
+ ## Intended uses & limitations
 
 
37
 
38
+ For Question-Answering -
39
+
40
+ ```python
41
+ !pip install transformers
42
+ from transformers import pipeline
43
+ model_checkpoint = "IProject-10/deberta-base-finetuned-squad2"
44
+ question_answerer = pipeline("question-answering", model=model_checkpoint)
45
+
46
+ context = """
47
+ 🤗 Transformers is backed by the three most popular deep learning libraries — Jax, PyTorch and TensorFlow — with a seamless integration
48
+ between them. It's straightforward to train your models with one before loading them for inference with the other.
49
+ """
50
+
51
+ question = "Which deep learning libraries back 🤗 Transformers?"
52
+ question_answerer(question=question, context=context)
53
+ ```
54
+
55
+ ## Results
56
+
57
+ Evaluation on SQuAD 2.0 validation dataset:
58
+
59
+ ```
60
+ exact: 81.03259496336226,
61
+ f1: 84.42279239924598,
62
+ total: 11873,
63
+ HasAns_exact: 79.30161943319838,
64
+ HasAns_f1: 86.09173653108105,
65
+ HasAns_total: 5928,
66
+ NoAns_exact: 82.75862068965517,
67
+ NoAns_f1: 82.75862068965517,
68
+ NoAns_total: 5945,
69
+ best_exact: 81.03259496336226,
70
+ best_exact_thresh: 0.9992604851722717,
71
+ best_f1: 84.42279239924635,
72
+ best_f1_thresh: 0.9992604851722717,
73
+ total_time_in_seconds: 326.41847440000004,
74
+ samples_per_second: 36.37355398411236,
75
+ latency_in_seconds: 0.027492501844521185
76
+ ```
77
 
78
  ### Training hyperparameters
79
 
 
94
  | 0.5368 | 2.0 | 16476 | 0.7901 |
95
  | 0.3845 | 3.0 | 24714 | 0.9334 |
96
 
97
+ This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the squad_v2 dataset.
98
+ It achieves the following results on the evaluation set:
99
+ - Loss: 0.9334
100
+
101
  ### Framework versions
102
 
103
  - Transformers 4.31.0
104
  - Pytorch 2.0.1+cu118
105
  - Datasets 2.14.3
106
+ - Tokenizers 0.13.3