--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: XLM-AgloBERTa-fi-ner results: [] --- # XLM-AgloBERTa-fi-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2917 - Precision: 0.8818 - Recall: 0.8970 - F1: 0.8893 - Accuracy: 0.9578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2709 | 1.0 | 1250 | 0.2630 | 0.8052 | 0.8239 | 0.8145 | 0.9296 | | 0.1861 | 2.0 | 2500 | 0.2313 | 0.8182 | 0.8543 | 0.8358 | 0.9357 | | 0.1341 | 3.0 | 3750 | 0.1858 | 0.8599 | 0.8644 | 0.8621 | 0.9492 | | 0.1035 | 4.0 | 5000 | 0.2108 | 0.8705 | 0.8738 | 0.8721 | 0.9520 | | 0.0784 | 5.0 | 6250 | 0.2073 | 0.8736 | 0.8779 | 0.8757 | 0.9538 | | 0.0572 | 6.0 | 7500 | 0.2226 | 0.8758 | 0.8828 | 0.8793 | 0.9549 | | 0.0358 | 7.0 | 8750 | 0.2514 | 0.8763 | 0.8885 | 0.8824 | 0.9566 | | 0.0226 | 8.0 | 10000 | 0.2522 | 0.8792 | 0.8922 | 0.8857 | 0.9563 | | 0.0151 | 9.0 | 11250 | 0.2836 | 0.8795 | 0.8949 | 0.8871 | 0.9576 | | 0.0079 | 10.0 | 12500 | 0.2917 | 0.8818 | 0.8970 | 0.8893 | 0.9578 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0