{ "best_metric": 0.5078858137130737, "best_model_checkpoint": "./output_v2/7b_cluster05_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_05/checkpoint-600", "epoch": 2.379182156133829, "global_step": 800, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.6832, "step": 10 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.5389, "step": 20 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.5072, "step": 30 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.5211, "step": 40 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.5888, "step": 50 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.534, "step": 60 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.5684, "step": 70 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.514, "step": 80 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.5518, "step": 90 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.5034, "step": 100 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.542, "step": 110 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.4847, "step": 120 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.4772, "step": 130 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.5196, "step": 140 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.4672, "step": 150 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.4913, "step": 160 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.5498, "step": 170 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.5328, "step": 180 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 0.5313, "step": 190 }, { "epoch": 0.59, "learning_rate": 0.0002, "loss": 0.515, "step": 200 }, { "epoch": 0.59, "eval_loss": 0.531296968460083, "eval_runtime": 174.4771, "eval_samples_per_second": 5.731, "eval_steps_per_second": 2.866, "step": 200 }, { "epoch": 0.59, "mmlu_eval_accuracy": 0.46292469330066577, "mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.5, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.3125, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.18181818181818182, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.5, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723, "mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.65, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.39473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.4, "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, "mmlu_eval_accuracy_professional_law": 0.3352941176470588, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.5909090909090909, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.3857738420406147, "step": 200 }, { "epoch": 0.62, "learning_rate": 0.0002, "loss": 0.4582, "step": 210 }, { "epoch": 0.65, "learning_rate": 0.0002, "loss": 0.4796, "step": 220 }, { "epoch": 0.68, "learning_rate": 0.0002, "loss": 0.5081, "step": 230 }, { "epoch": 0.71, "learning_rate": 0.0002, "loss": 0.5206, "step": 240 }, { "epoch": 0.74, "learning_rate": 0.0002, "loss": 0.4961, "step": 250 }, { "epoch": 0.77, "learning_rate": 0.0002, "loss": 0.5219, "step": 260 }, { "epoch": 0.8, "learning_rate": 0.0002, "loss": 0.5311, "step": 270 }, { "epoch": 0.83, "learning_rate": 0.0002, "loss": 0.5039, "step": 280 }, { "epoch": 0.86, "learning_rate": 0.0002, "loss": 0.4994, "step": 290 }, { "epoch": 0.89, "learning_rate": 0.0002, "loss": 0.4804, "step": 300 }, { "epoch": 0.92, "learning_rate": 0.0002, "loss": 0.4791, "step": 310 }, { "epoch": 0.95, "learning_rate": 0.0002, "loss": 0.4822, "step": 320 }, { "epoch": 0.98, "learning_rate": 0.0002, "loss": 0.5157, "step": 330 }, { "epoch": 1.01, "learning_rate": 0.0002, "loss": 0.5184, "step": 340 }, { "epoch": 1.04, "learning_rate": 0.0002, "loss": 0.4562, "step": 350 }, { "epoch": 1.07, "learning_rate": 0.0002, "loss": 0.4117, "step": 360 }, { "epoch": 1.1, "learning_rate": 0.0002, "loss": 0.451, "step": 370 }, { "epoch": 1.13, "learning_rate": 0.0002, "loss": 0.4237, "step": 380 }, { "epoch": 1.16, "learning_rate": 0.0002, "loss": 0.4243, "step": 390 }, { "epoch": 1.19, "learning_rate": 0.0002, "loss": 0.4409, "step": 400 }, { "epoch": 1.19, "eval_loss": 0.5141976475715637, "eval_runtime": 174.8657, "eval_samples_per_second": 5.719, "eval_steps_per_second": 2.859, "step": 400 }, { "epoch": 1.19, "mmlu_eval_accuracy": 0.45097298030174665, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5, "mmlu_eval_accuracy_astronomy": 0.5, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.2727272727272727, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.3125, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.7272727272727273, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.5, "mmlu_eval_accuracy_high_school_physics": 0.29411764705882354, "mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.68, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.5, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5151515151515151, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.3411764705882353, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.3888888888888889, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.0380505950970687, "step": 400 }, { "epoch": 1.22, "learning_rate": 0.0002, "loss": 0.4176, "step": 410 }, { "epoch": 1.25, "learning_rate": 0.0002, "loss": 0.445, "step": 420 }, { "epoch": 1.28, "learning_rate": 0.0002, "loss": 0.4968, "step": 430 }, { "epoch": 1.31, "learning_rate": 0.0002, "loss": 0.4573, "step": 440 }, { "epoch": 1.34, "learning_rate": 0.0002, "loss": 0.4097, "step": 450 }, { "epoch": 1.37, "learning_rate": 0.0002, "loss": 0.4215, "step": 460 }, { "epoch": 1.4, "learning_rate": 0.0002, "loss": 0.4754, "step": 470 }, { "epoch": 1.43, "learning_rate": 0.0002, "loss": 0.4463, "step": 480 }, { "epoch": 1.46, "learning_rate": 0.0002, "loss": 0.4027, "step": 490 }, { "epoch": 1.49, "learning_rate": 0.0002, "loss": 0.4361, "step": 500 }, { "epoch": 1.52, "learning_rate": 0.0002, "loss": 0.4458, "step": 510 }, { "epoch": 1.55, "learning_rate": 0.0002, "loss": 0.4445, "step": 520 }, { "epoch": 1.58, "learning_rate": 0.0002, "loss": 0.4117, "step": 530 }, { "epoch": 1.61, "learning_rate": 0.0002, "loss": 0.4609, "step": 540 }, { "epoch": 1.64, "learning_rate": 0.0002, "loss": 0.4511, "step": 550 }, { "epoch": 1.67, "learning_rate": 0.0002, "loss": 0.4385, "step": 560 }, { "epoch": 1.7, "learning_rate": 0.0002, "loss": 0.4451, "step": 570 }, { "epoch": 1.72, "learning_rate": 0.0002, "loss": 0.4414, "step": 580 }, { "epoch": 1.75, "learning_rate": 0.0002, "loss": 0.4235, "step": 590 }, { "epoch": 1.78, "learning_rate": 0.0002, "loss": 0.4954, "step": 600 }, { "epoch": 1.78, "eval_loss": 0.5078858137130737, "eval_runtime": 174.9277, "eval_samples_per_second": 5.717, "eval_steps_per_second": 2.858, "step": 600 }, { "epoch": 1.78, "mmlu_eval_accuracy": 0.4596214580927039, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.5, "mmlu_eval_accuracy_business_ethics": 0.6363636363636364, "mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.2727272727272727, "mmlu_eval_accuracy_college_physics": 0.5454545454545454, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.43902439024390244, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256, "mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069, "mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464, "mmlu_eval_accuracy_high_school_physics": 0.23529411764705882, "mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.2727272727272727, "mmlu_eval_accuracy_logical_fallacies": 0.5, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.72, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6627906976744186, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.23, "mmlu_eval_accuracy_nutrition": 0.5757575757575758, "mmlu_eval_accuracy_philosophy": 0.47058823529411764, "mmlu_eval_accuracy_prehistory": 0.4857142857142857, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3588235294117647, "mmlu_eval_accuracy_professional_medicine": 0.45161290322580644, "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.5555555555555556, "mmlu_eval_accuracy_sociology": 0.6363636363636364, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.3333333333333333, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.0377603609980552, "step": 600 }, { "epoch": 1.81, "learning_rate": 0.0002, "loss": 0.4865, "step": 610 }, { "epoch": 1.84, "learning_rate": 0.0002, "loss": 0.4451, "step": 620 }, { "epoch": 1.87, "learning_rate": 0.0002, "loss": 0.424, "step": 630 }, { "epoch": 1.9, "learning_rate": 0.0002, "loss": 0.4473, "step": 640 }, { "epoch": 1.93, "learning_rate": 0.0002, "loss": 0.4627, "step": 650 }, { "epoch": 1.96, "learning_rate": 0.0002, "loss": 0.4298, "step": 660 }, { "epoch": 1.99, "learning_rate": 0.0002, "loss": 0.4561, "step": 670 }, { "epoch": 2.02, "learning_rate": 0.0002, "loss": 0.3726, "step": 680 }, { "epoch": 2.05, "learning_rate": 0.0002, "loss": 0.3548, "step": 690 }, { "epoch": 2.08, "learning_rate": 0.0002, "loss": 0.3565, "step": 700 }, { "epoch": 2.11, "learning_rate": 0.0002, "loss": 0.3133, "step": 710 }, { "epoch": 2.14, "learning_rate": 0.0002, "loss": 0.3475, "step": 720 }, { "epoch": 2.17, "learning_rate": 0.0002, "loss": 0.3761, "step": 730 }, { "epoch": 2.2, "learning_rate": 0.0002, "loss": 0.3336, "step": 740 }, { "epoch": 2.23, "learning_rate": 0.0002, "loss": 0.392, "step": 750 }, { "epoch": 2.26, "learning_rate": 0.0002, "loss": 0.3556, "step": 760 }, { "epoch": 2.29, "learning_rate": 0.0002, "loss": 0.3706, "step": 770 }, { "epoch": 2.32, "learning_rate": 0.0002, "loss": 0.3426, "step": 780 }, { "epoch": 2.35, "learning_rate": 0.0002, "loss": 0.3273, "step": 790 }, { "epoch": 2.38, "learning_rate": 0.0002, "loss": 0.3772, "step": 800 }, { "epoch": 2.38, "eval_loss": 0.5177344083786011, "eval_runtime": 175.3396, "eval_samples_per_second": 5.703, "eval_steps_per_second": 2.852, "step": 800 }, { "epoch": 2.38, "mmlu_eval_accuracy": 0.4452625151934351, "mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.5, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.375, "mmlu_eval_accuracy_college_chemistry": 0.0, "mmlu_eval_accuracy_college_computer_science": 0.2727272727272727, "mmlu_eval_accuracy_college_mathematics": 0.2727272727272727, "mmlu_eval_accuracy_college_medicine": 0.2727272727272727, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.3125, "mmlu_eval_accuracy_elementary_mathematics": 0.4634146341463415, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.34375, "mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365, "mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444, "mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.2692307692307692, "mmlu_eval_accuracy_high_school_physics": 0.23529411764705882, "mmlu_eval_accuracy_high_school_psychology": 0.7, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364, "mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156, "mmlu_eval_accuracy_human_aging": 0.6521739130434783, "mmlu_eval_accuracy_human_sexuality": 0.5, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.36363636363636365, "mmlu_eval_accuracy_logical_fallacies": 0.5, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.45454545454545453, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.47368421052631576, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5151515151515151, "mmlu_eval_accuracy_philosophy": 0.4411764705882353, "mmlu_eval_accuracy_prehistory": 0.45714285714285713, "mmlu_eval_accuracy_professional_accounting": 0.25806451612903225, "mmlu_eval_accuracy_professional_law": 0.3588235294117647, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.42028985507246375, "mmlu_eval_accuracy_public_relations": 0.6666666666666666, "mmlu_eval_accuracy_security_studies": 0.48148148148148145, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 0.9420785120841573, "step": 800 } ], "max_steps": 5000, "num_train_epochs": 15, "total_flos": 1.6252093169374003e+17, "trial_name": null, "trial_params": null }