make config similar to transformers except for flash
Browse files- configuration_siglip.py +26 -168
configuration_siglip.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# coding=utf-8
|
2 |
-
# Copyright
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
@@ -15,17 +15,10 @@
|
|
15 |
""" Siglip model configuration"""
|
16 |
|
17 |
import os
|
18 |
-
from
|
19 |
-
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
from transformers.processing_utils import ProcessorMixin
|
24 |
-
from transformers.utils import TensorType
|
25 |
-
|
26 |
-
from transformers.configuration_utils import PretrainedConfig
|
27 |
-
from transformers.onnx import OnnxConfig
|
28 |
-
from transformers.utils import logging
|
29 |
|
30 |
|
31 |
logger = logging.get_logger(__name__)
|
@@ -46,16 +39,16 @@ class SiglipTextConfig(PretrainedConfig):
|
|
46 |
documentation from [`PretrainedConfig`] for more information.
|
47 |
|
48 |
Args:
|
49 |
-
vocab_size (`int`, *optional*, defaults to
|
50 |
Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by
|
51 |
the `inputs_ids` passed when calling [`SiglipModel`].
|
52 |
-
hidden_size (`int`, *optional*, defaults to
|
53 |
Dimensionality of the encoder layers and the pooler layer.
|
54 |
-
intermediate_size (`int`, *optional*, defaults to
|
55 |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
56 |
num_hidden_layers (`int`, *optional*, defaults to 12):
|
57 |
Number of hidden layers in the Transformer encoder.
|
58 |
-
num_attention_heads (`int`, *optional*, defaults to
|
59 |
Number of attention heads for each attention layer in the Transformer encoder.
|
60 |
max_position_embeddings (`int`, *optional*, defaults to 64):
|
61 |
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
@@ -63,15 +56,16 @@ class SiglipTextConfig(PretrainedConfig):
|
|
63 |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
64 |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
65 |
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
66 |
-
layer_norm_eps (`float`, *optional*, defaults to 1e-
|
67 |
The epsilon used by the layer normalization layers.
|
68 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
69 |
The dropout ratio for the attention probabilities.
|
70 |
-
|
71 |
-
The
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
75 |
|
76 |
Example:
|
77 |
|
@@ -87,22 +81,20 @@ class SiglipTextConfig(PretrainedConfig):
|
|
87 |
>>> # Accessing the model configuration
|
88 |
>>> configuration = model.config
|
89 |
```"""
|
|
|
90 |
model_type = "siglip_text_model"
|
91 |
|
92 |
def __init__(
|
93 |
self,
|
94 |
-
vocab_size=
|
95 |
-
hidden_size=
|
96 |
-
intermediate_size=
|
97 |
-
projection_dim=512,
|
98 |
num_hidden_layers=12,
|
99 |
-
num_attention_heads=
|
100 |
max_position_embeddings=64,
|
101 |
hidden_act="gelu_pytorch_tanh",
|
102 |
layer_norm_eps=1e-6,
|
103 |
attention_dropout=0.0,
|
104 |
-
initializer_range=0.02,
|
105 |
-
initializer_factor=1.0,
|
106 |
# This differs from `CLIPTokenizer`'s default and from openai/siglip
|
107 |
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
|
108 |
pad_token_id=1,
|
@@ -116,14 +108,11 @@ class SiglipTextConfig(PretrainedConfig):
|
|
116 |
self.vocab_size = vocab_size
|
117 |
self.hidden_size = hidden_size
|
118 |
self.intermediate_size = intermediate_size
|
119 |
-
self.projection_dim = projection_dim
|
120 |
self.num_hidden_layers = num_hidden_layers
|
121 |
self.num_attention_heads = num_attention_heads
|
122 |
self.max_position_embeddings = max_position_embeddings
|
123 |
self.layer_norm_eps = layer_norm_eps
|
124 |
self.hidden_act = hidden_act
|
125 |
-
self.initializer_range = initializer_range
|
126 |
-
self.initializer_factor = initializer_factor
|
127 |
self.attention_dropout = attention_dropout
|
128 |
self._flash_attn_2_enabled = _flash_attn_2_enabled
|
129 |
|
@@ -165,22 +154,19 @@ class SiglipVisionConfig(PretrainedConfig):
|
|
165 |
Number of hidden layers in the Transformer encoder.
|
166 |
num_attention_heads (`int`, *optional*, defaults to 12):
|
167 |
Number of attention heads for each attention layer in the Transformer encoder.
|
|
|
|
|
168 |
image_size (`int`, *optional*, defaults to 224):
|
169 |
The size (resolution) of each image.
|
170 |
-
patch_size (`int`, *optional*, defaults to
|
171 |
The size (resolution) of each patch.
|
172 |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
173 |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
174 |
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
175 |
-
layer_norm_eps (`float`, *optional*, defaults to 1e-
|
176 |
The epsilon used by the layer normalization layers.
|
177 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
178 |
The dropout ratio for the attention probabilities.
|
179 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
180 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
181 |
-
initializer_factor (`float`, *optional*, defaults to 1):
|
182 |
-
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
183 |
-
testing).
|
184 |
|
185 |
Example:
|
186 |
|
@@ -203,17 +189,14 @@ class SiglipVisionConfig(PretrainedConfig):
|
|
203 |
self,
|
204 |
hidden_size=768,
|
205 |
intermediate_size=3072,
|
206 |
-
projection_dim=512,
|
207 |
num_hidden_layers=12,
|
208 |
num_attention_heads=12,
|
209 |
num_channels=3,
|
210 |
image_size=224,
|
211 |
-
patch_size=
|
212 |
hidden_act="gelu_pytorch_tanh",
|
213 |
layer_norm_eps=1e-6,
|
214 |
attention_dropout=0.0,
|
215 |
-
initializer_range=0.02,
|
216 |
-
initializer_factor=1.0,
|
217 |
_flash_attn_2_enabled=True,
|
218 |
**kwargs,
|
219 |
):
|
@@ -221,14 +204,11 @@ class SiglipVisionConfig(PretrainedConfig):
|
|
221 |
|
222 |
self.hidden_size = hidden_size
|
223 |
self.intermediate_size = intermediate_size
|
224 |
-
self.projection_dim = projection_dim
|
225 |
self.num_hidden_layers = num_hidden_layers
|
226 |
self.num_attention_heads = num_attention_heads
|
227 |
self.num_channels = num_channels
|
228 |
self.patch_size = patch_size
|
229 |
self.image_size = image_size
|
230 |
-
self.initializer_range = initializer_range
|
231 |
-
self.initializer_factor = initializer_factor
|
232 |
self.attention_dropout = attention_dropout
|
233 |
self.layer_norm_eps = layer_norm_eps
|
234 |
self.hidden_act = hidden_act
|
@@ -268,10 +248,6 @@ class SiglipConfig(PretrainedConfig):
|
|
268 |
Dictionary of configuration options used to initialize [`SiglipTextConfig`].
|
269 |
vision_config (`dict`, *optional*):
|
270 |
Dictionary of configuration options used to initialize [`SiglipVisionConfig`].
|
271 |
-
projection_dim (`int`, *optional*, defaults to 512):
|
272 |
-
Dimentionality of text and vision projection layers.
|
273 |
-
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
|
274 |
-
The inital value of the *logit_scale* paramter. Default is used as per the original Siglip implementation.
|
275 |
kwargs (*optional*):
|
276 |
Dictionary of keyword arguments.
|
277 |
|
@@ -301,79 +277,9 @@ class SiglipConfig(PretrainedConfig):
|
|
301 |
|
302 |
model_type = "siglip"
|
303 |
|
304 |
-
def __init__(
|
305 |
-
self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
|
306 |
-
):
|
307 |
-
# If `_config_dict` exist, we use them for the backward compatibility.
|
308 |
-
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
|
309 |
-
# of confusion!).
|
310 |
-
text_config_dict = kwargs.pop("text_config_dict", None)
|
311 |
-
vision_config_dict = kwargs.pop("vision_config_dict", None)
|
312 |
-
|
313 |
super().__init__(**kwargs)
|
314 |
|
315 |
-
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
|
316 |
-
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
|
317 |
-
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
|
318 |
-
if text_config_dict is not None:
|
319 |
-
if text_config is None:
|
320 |
-
text_config = {}
|
321 |
-
|
322 |
-
# This is the complete result when using `text_config_dict`.
|
323 |
-
_text_config_dict = SiglipTextConfig(**text_config_dict).to_dict()
|
324 |
-
|
325 |
-
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
|
326 |
-
for key, value in _text_config_dict.items():
|
327 |
-
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
|
328 |
-
# If specified in `text_config_dict`
|
329 |
-
if key in text_config_dict:
|
330 |
-
message = (
|
331 |
-
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values."
|
332 |
-
f' The value `text_config_dict["{key}"]` will be used instead.'
|
333 |
-
)
|
334 |
-
# If inferred from default argument values (just to be super careful)
|
335 |
-
else:
|
336 |
-
message = (
|
337 |
-
"`text_config_dict` is provided which will be used to initialize `SiglipTextConfig`. The "
|
338 |
-
f'value `text_config["{key}"]` will be overriden.'
|
339 |
-
)
|
340 |
-
logger.warning(message)
|
341 |
-
|
342 |
-
# Update all values in `text_config` with the ones in `_text_config_dict`.
|
343 |
-
text_config.update(_text_config_dict)
|
344 |
-
|
345 |
-
if vision_config_dict is not None:
|
346 |
-
if vision_config is None:
|
347 |
-
vision_config = {}
|
348 |
-
|
349 |
-
# This is the complete result when using `vision_config_dict`.
|
350 |
-
_vision_config_dict = SiglipVisionConfig(**vision_config_dict).to_dict()
|
351 |
-
# convert keys to string instead of integer
|
352 |
-
if "id2label" in _vision_config_dict:
|
353 |
-
_vision_config_dict["id2label"] = {
|
354 |
-
str(key): value for key, value in _vision_config_dict["id2label"].items()
|
355 |
-
}
|
356 |
-
|
357 |
-
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
|
358 |
-
for key, value in _vision_config_dict.items():
|
359 |
-
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
|
360 |
-
# If specified in `vision_config_dict`
|
361 |
-
if key in vision_config_dict:
|
362 |
-
message = (
|
363 |
-
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
|
364 |
-
f'values. The value `vision_config_dict["{key}"]` will be used instead.'
|
365 |
-
)
|
366 |
-
# If inferred from default argument values (just to be super careful)
|
367 |
-
else:
|
368 |
-
message = (
|
369 |
-
"`vision_config_dict` is provided which will be used to initialize `SiglipVisionConfig`. "
|
370 |
-
f'The value `vision_config["{key}"]` will be overriden.'
|
371 |
-
)
|
372 |
-
logger.warning(message)
|
373 |
-
|
374 |
-
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
|
375 |
-
vision_config.update(_vision_config_dict)
|
376 |
-
|
377 |
if text_config is None:
|
378 |
text_config = {}
|
379 |
logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.")
|
@@ -385,8 +291,6 @@ class SiglipConfig(PretrainedConfig):
|
|
385 |
self.text_config = SiglipTextConfig(**text_config)
|
386 |
self.vision_config = SiglipVisionConfig(**vision_config)
|
387 |
|
388 |
-
self.projection_dim = projection_dim
|
389 |
-
self.logit_scale_init_value = logit_scale_init_value
|
390 |
self.initializer_factor = 1.0
|
391 |
|
392 |
@classmethod
|
@@ -400,49 +304,3 @@ class SiglipConfig(PretrainedConfig):
|
|
400 |
"""
|
401 |
|
402 |
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
403 |
-
|
404 |
-
|
405 |
-
class SiglipOnnxConfig(OnnxConfig):
|
406 |
-
@property
|
407 |
-
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
408 |
-
return OrderedDict(
|
409 |
-
[
|
410 |
-
("input_ids", {0: "batch", 1: "sequence"}),
|
411 |
-
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
412 |
-
("attention_mask", {0: "batch", 1: "sequence"}),
|
413 |
-
]
|
414 |
-
)
|
415 |
-
|
416 |
-
@property
|
417 |
-
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
418 |
-
return OrderedDict(
|
419 |
-
[
|
420 |
-
("logits_per_image", {0: "batch"}),
|
421 |
-
("logits_per_text", {0: "batch"}),
|
422 |
-
("text_embeds", {0: "batch"}),
|
423 |
-
("image_embeds", {0: "batch"}),
|
424 |
-
]
|
425 |
-
)
|
426 |
-
|
427 |
-
@property
|
428 |
-
def atol_for_validation(self) -> float:
|
429 |
-
return 1e-4
|
430 |
-
|
431 |
-
def generate_dummy_inputs(
|
432 |
-
self,
|
433 |
-
processor: "ProcessorMixin",
|
434 |
-
batch_size: int = -1,
|
435 |
-
seq_length: int = -1,
|
436 |
-
framework: Optional["TensorType"] = None,
|
437 |
-
) -> Mapping[str, Any]:
|
438 |
-
text_input_dict = super().generate_dummy_inputs(
|
439 |
-
processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework
|
440 |
-
)
|
441 |
-
image_input_dict = super().generate_dummy_inputs(
|
442 |
-
processor.image_processor, batch_size=batch_size, framework=framework
|
443 |
-
)
|
444 |
-
return {**text_input_dict, **image_input_dict}
|
445 |
-
|
446 |
-
@property
|
447 |
-
def default_onnx_opset(self) -> int:
|
448 |
-
return 14
|
|
|
1 |
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
|
|
15 |
""" Siglip model configuration"""
|
16 |
|
17 |
import os
|
18 |
+
from typing import Union
|
|
|
19 |
|
20 |
+
from ...configuration_utils import PretrainedConfig
|
21 |
+
from ...utils import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
|
24 |
logger = logging.get_logger(__name__)
|
|
|
39 |
documentation from [`PretrainedConfig`] for more information.
|
40 |
|
41 |
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
43 |
Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by
|
44 |
the `inputs_ids` passed when calling [`SiglipModel`].
|
45 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
46 |
Dimensionality of the encoder layers and the pooler layer.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
48 |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
49 |
num_hidden_layers (`int`, *optional*, defaults to 12):
|
50 |
Number of hidden layers in the Transformer encoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
52 |
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
max_position_embeddings (`int`, *optional*, defaults to 64):
|
54 |
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
|
|
56 |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
57 |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
58 |
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
59 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
60 |
The epsilon used by the layer normalization layers.
|
61 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
62 |
The dropout ratio for the attention probabilities.
|
63 |
+
pad_token_id (`int`, *optional*, defaults to 1):
|
64 |
+
The id of the padding token in the vocabulary.
|
65 |
+
bos_token_id (`int`, *optional*, defaults to 49406):
|
66 |
+
The id of the beginning-of-sequence token in the vocabulary.
|
67 |
+
eos_token_id (`int`, *optional*, defaults to 49407):
|
68 |
+
The id of the end-of-sequence token in the vocabulary.
|
69 |
|
70 |
Example:
|
71 |
|
|
|
81 |
>>> # Accessing the model configuration
|
82 |
>>> configuration = model.config
|
83 |
```"""
|
84 |
+
|
85 |
model_type = "siglip_text_model"
|
86 |
|
87 |
def __init__(
|
88 |
self,
|
89 |
+
vocab_size=32000,
|
90 |
+
hidden_size=768,
|
91 |
+
intermediate_size=3072,
|
|
|
92 |
num_hidden_layers=12,
|
93 |
+
num_attention_heads=12,
|
94 |
max_position_embeddings=64,
|
95 |
hidden_act="gelu_pytorch_tanh",
|
96 |
layer_norm_eps=1e-6,
|
97 |
attention_dropout=0.0,
|
|
|
|
|
98 |
# This differs from `CLIPTokenizer`'s default and from openai/siglip
|
99 |
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
|
100 |
pad_token_id=1,
|
|
|
108 |
self.vocab_size = vocab_size
|
109 |
self.hidden_size = hidden_size
|
110 |
self.intermediate_size = intermediate_size
|
|
|
111 |
self.num_hidden_layers = num_hidden_layers
|
112 |
self.num_attention_heads = num_attention_heads
|
113 |
self.max_position_embeddings = max_position_embeddings
|
114 |
self.layer_norm_eps = layer_norm_eps
|
115 |
self.hidden_act = hidden_act
|
|
|
|
|
116 |
self.attention_dropout = attention_dropout
|
117 |
self._flash_attn_2_enabled = _flash_attn_2_enabled
|
118 |
|
|
|
154 |
Number of hidden layers in the Transformer encoder.
|
155 |
num_attention_heads (`int`, *optional*, defaults to 12):
|
156 |
Number of attention heads for each attention layer in the Transformer encoder.
|
157 |
+
num_channels (`int`, *optional*, defaults to 3):
|
158 |
+
Number of channels in the input images.
|
159 |
image_size (`int`, *optional*, defaults to 224):
|
160 |
The size (resolution) of each image.
|
161 |
+
patch_size (`int`, *optional*, defaults to 16):
|
162 |
The size (resolution) of each patch.
|
163 |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
164 |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
165 |
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
166 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
167 |
The epsilon used by the layer normalization layers.
|
168 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
169 |
The dropout ratio for the attention probabilities.
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
Example:
|
172 |
|
|
|
189 |
self,
|
190 |
hidden_size=768,
|
191 |
intermediate_size=3072,
|
|
|
192 |
num_hidden_layers=12,
|
193 |
num_attention_heads=12,
|
194 |
num_channels=3,
|
195 |
image_size=224,
|
196 |
+
patch_size=16,
|
197 |
hidden_act="gelu_pytorch_tanh",
|
198 |
layer_norm_eps=1e-6,
|
199 |
attention_dropout=0.0,
|
|
|
|
|
200 |
_flash_attn_2_enabled=True,
|
201 |
**kwargs,
|
202 |
):
|
|
|
204 |
|
205 |
self.hidden_size = hidden_size
|
206 |
self.intermediate_size = intermediate_size
|
|
|
207 |
self.num_hidden_layers = num_hidden_layers
|
208 |
self.num_attention_heads = num_attention_heads
|
209 |
self.num_channels = num_channels
|
210 |
self.patch_size = patch_size
|
211 |
self.image_size = image_size
|
|
|
|
|
212 |
self.attention_dropout = attention_dropout
|
213 |
self.layer_norm_eps = layer_norm_eps
|
214 |
self.hidden_act = hidden_act
|
|
|
248 |
Dictionary of configuration options used to initialize [`SiglipTextConfig`].
|
249 |
vision_config (`dict`, *optional*):
|
250 |
Dictionary of configuration options used to initialize [`SiglipVisionConfig`].
|
|
|
|
|
|
|
|
|
251 |
kwargs (*optional*):
|
252 |
Dictionary of keyword arguments.
|
253 |
|
|
|
277 |
|
278 |
model_type = "siglip"
|
279 |
|
280 |
+
def __init__(self, text_config=None, vision_config=None, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
super().__init__(**kwargs)
|
282 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
if text_config is None:
|
284 |
text_config = {}
|
285 |
logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.")
|
|
|
291 |
self.text_config = SiglipTextConfig(**text_config)
|
292 |
self.vision_config = SiglipVisionConfig(**vision_config)
|
293 |
|
|
|
|
|
294 |
self.initializer_factor = 1.0
|
295 |
|
296 |
@classmethod
|
|
|
304 |
"""
|
305 |
|
306 |
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|