lewtun HF staff commited on
Commit
2e58c1c
·
1 Parent(s): 7b9a8f6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -3
README.md CHANGED
@@ -14,8 +14,23 @@ license: bigcode-openrail-m
14
 
15
  StarChat is a series of language models that are trained to act as helpful coding assistants. StarChat Beta is the second model in the series, and is a fine-tuned version of [StarCoderPlus](https://huggingface.co/bigcode/starcoderplus) that was trained on an ["uncensored"](https://erichartford.com/uncensored-models) variant of the [`openassistant-guanaco` dataset](https://huggingface.co/datasets/timdettmers/openassistant-guanaco). We found that removing the in-built alignment of the OpenAssistant dataset boosted performance on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) and made the model more helpful at coding tasks. However, this means that model is likely to generate problematic text when prompted to do so and should only be used for educational and research purposes.
16
 
17
- - **Repository:** [bigcode-project/starcoder](https://github.com/bigcode-project/starcoder)
18
- - **Languages:** 35+ Natural languages & 80+ Programming languages
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
 
21
  ## Intended uses & limitations
@@ -37,6 +52,22 @@ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.2, top_
37
  # You can sort a list in Python by using the sort() method. Here's an example:\n\n```\nnumbers = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]\nnumbers.sort()\nprint(numbers)\n```\n\nThis will sort the list in place and print the sorted list.
38
  ```
39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  ## Training and evaluation data
41
 
42
  StarChat Beta is trained on an ["uncensored"](https://erichartford.com/uncensored-models) variant of the [`openassistant-guanaco` dataset](https://huggingface.co/datasets/timdettmers/openassistant-guanaco). We applied the same [recipe](https://huggingface.co/datasets/ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered/blob/main/wizardlm_clean.py) used to filter the ShareGPT datasets behind the [WizardLM](https://huggingface.co/datasets/ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered).
@@ -77,4 +108,20 @@ The following hyperparameters were used during training:
77
  - Transformers 4.28.1
78
  - Pytorch 2.0.1+cu118
79
  - Datasets 2.12.0
80
- - Tokenizers 0.13.3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
  StarChat is a series of language models that are trained to act as helpful coding assistants. StarChat Beta is the second model in the series, and is a fine-tuned version of [StarCoderPlus](https://huggingface.co/bigcode/starcoderplus) that was trained on an ["uncensored"](https://erichartford.com/uncensored-models) variant of the [`openassistant-guanaco` dataset](https://huggingface.co/datasets/timdettmers/openassistant-guanaco). We found that removing the in-built alignment of the OpenAssistant dataset boosted performance on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) and made the model more helpful at coding tasks. However, this means that model is likely to generate problematic text when prompted to do so and should only be used for educational and research purposes.
16
 
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+ - **Model type:** A 16B parameter GPT-like model fine-tuned on a blend of the [`oasst1`](https://huggingface.co/datasets/OpenAssistant/oasst1) and [`databricks-dolly-15k`](https://huggingface.co/datasets/databricks/databricks-dolly-15k) datasets.
24
+ - **Language(s) (NLP):** English
25
+ - **License:** BigCode Open RAIL-M v1
26
+ - **Finetuned from model:** [bigcode/starcoderbase](https://huggingface.co/bigcode/starcoderbase)
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** https://github.com/bigcode-project/starcoder
33
+ - **Demo:** https://huggingface.co/spaces/HuggingFaceH4/starchat-playground
34
 
35
 
36
  ## Intended uses & limitations
 
52
  # You can sort a list in Python by using the sort() method. Here's an example:\n\n```\nnumbers = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]\nnumbers.sort()\nprint(numbers)\n```\n\nThis will sort the list in place and print the sorted list.
53
  ```
54
 
55
+ ## Bias, Risks, and Limitations
56
+
57
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
58
+
59
+ StarChat Alpha has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
60
+ Models trained primarily on code data will also have a more skewed demographic bias commensurate with the demographics of the GitHub community, for more on this see the [StarCoder dataset](https://huggingface.co/datasets/bigcode/starcoderdata) which is derived from The Stack.
61
+
62
+
63
+ Since the base model was pretrained on a large corpus of code, it may produce code snippets that are syntactically valid but semantically incorrect.
64
+ For example, it may produce code that does not compile or that produces incorrect results.
65
+ It may also produce code that is vulnerable to security exploits.
66
+ We have observed the model also has a tendency to produce false URLs which should be carefully inspected before clicking.
67
+
68
+ StarChat Alpha was fine-tuned from the base model [StarCoder Base](https://huggingface.co/bigcode/starcoderbase), please refer to its model card's [Limitations Section](https://huggingface.co/bigcode/starcoderbase#limitations) for relevant information.
69
+ In particular, the model was evaluated on some categories of gender biases, propensity for toxicity, and risk of suggesting code completions with known security flaws; these evaluations are reported in its [technical report](https://drive.google.com/file/d/1cN-b9GnWtHzQRoE7M7gAEyivY0kl4BYs/view).
70
+
71
  ## Training and evaluation data
72
 
73
  StarChat Beta is trained on an ["uncensored"](https://erichartford.com/uncensored-models) variant of the [`openassistant-guanaco` dataset](https://huggingface.co/datasets/timdettmers/openassistant-guanaco). We applied the same [recipe](https://huggingface.co/datasets/ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered/blob/main/wizardlm_clean.py) used to filter the ShareGPT datasets behind the [WizardLM](https://huggingface.co/datasets/ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered).
 
108
  - Transformers 4.28.1
109
  - Pytorch 2.0.1+cu118
110
  - Datasets 2.12.0
111
+ - Tokenizers 0.13.3
112
+
113
+ ## Citation
114
+
115
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
116
+
117
+ **BibTeX:**
118
+
119
+ ```
120
+ @article{Tunstall2023starchat-alpha,
121
+ author = {Tunstall, Lewis and Lambert, Nathan and Rajani, Nazneen and Beeching, Edward and Le Scao, Teven and von Werra, Leandro and Han, Sheon and Schmid, Philipp and Rush, Alexander},
122
+ title = {Creating a Coding Assistant with StarCoder},
123
+ journal = {Hugging Face Blog},
124
+ year = {2023},
125
+ note = {https://huggingface.co/blog/starchat},
126
+ }
127
+ ```