{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eccf006aa70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eccf006ab00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eccf006ab90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eccf006ac20>", "_build": "<function ActorCriticPolicy._build at 0x7eccf006acb0>", "forward": "<function ActorCriticPolicy.forward at 0x7eccf006ad40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eccf006add0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eccf006ae60>", "_predict": "<function ActorCriticPolicy._predict at 0x7eccf006aef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eccf006af80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eccf006b010>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eccf006b0a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ecceffd1dc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1737284808493391486, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADM7jjwp2CC6KNn8uQSzmLSW84W6O08SOQAAgD8AAIA/TVM8vXtmlLqNgLW7P4UdOHikG7q2Ey62AACAPwAAgD/mvEa9ew6qutObNrjEnyWzHjpzuhN8UTcAAIA/AACAP7NEX70UiJS6Cvz/N2BdAjPCX/Q5I0QUtwAAgD8AAIA/zWx0upL00zySMgm+8Zhavtge/DqSNZm9AAAAAAAAAACA1jA99owcuvWwRTeb9IkyQtpCulYkZbYAAIA/AACAP81M8bvhApS6IEDqOV0/CbnUWTA7Wh7xuAAAgD8AAIA/gEc7PSnoB7r3gQO2An65sH9dizsGLSE1AACAPwAAgD+zMpK99txTur8UBjlkOgQ0y27FOjMAHrgAAIA/AACAP+azL73UAYM9xtUGPY6WXL6LKVa76BRbOQAAAAAAAAAA5shfPRSwh7pOFLu77GZxtL2dS7g1z+szAACAPwAAAADNRVS9j6ZIulprjrlVIWwzAQCLuwokozgAAIA/AACAP5o5RrofndW5XRCJvEzgZzaUgkI7wxLWtQAAgD8AAIA/ZhadO8PhX7qsQKc61/GUNaVHXDouvMS5AACAPwAAgD/AP5m9H0X4OEYNOLTusKsvaTlou/y+qTMAAIA/AACAPyamSb7oma4/NRN8vs+6Yb5cqIe+jPuROwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGMbhysCDEqMAWyUTegDjAF0lEdAmVtixiXpn3V9lChoBkdAYqWFmnO0LWgHTegDaAhHQJlc3f3vhIh1fZQoaAZHQHDwHyRSxaBoB00JAmgIR0CZYH7p3X7MdX2UKGgGR0Bw2dNGmUGFaAdNgQNoCEdAmWGqNlyzX3V9lChoBkdAY+1BsQ/X5GgHTegDaAhHQJlojChvitJ1fZQoaAZHQGcxHcL0BfdoB03oA2gIR0CZajrksBhhdX2UKGgGR0BhWgyfthNNaAdN6ANoCEdAmWqHiWE9MnV9lChoBkdAZ1ory1/lQ2gHTegDaAhHQJlufdadMCd1fZQoaAZHQHAWJ0OmR/5oB02JAmgIR0CZd9fOUt7KdX2UKGgGR0Bkm9+G47RwaAdN6ANoCEdAmXwJCWu5jHV9lChoBkdAU27HktEofGgHS9loCEdAmXwp9AooeHV9lChoBkdAbx/7Z39rGmgHTVQDaAhHQJmZWZ7Xxvx1fZQoaAZHQHHQMNMGorFoB031AmgIR0CZn56KtPpIdX2UKGgGR0BM7YQSSNfgaAdL6WgIR0CZoGbiZOSGdX2UKGgGR0BjIOLtNSIhaAdN6ANoCEdAmaRJPZZjhHV9lChoBkdAZeiSeRPoFGgHTegDaAhHQJmmE7Omixp1fZQoaAZHQGUdPq1PWQRoB03oA2gIR0CZpxfrrxAjdX2UKGgGR0BtLrjPv8ZUaAdNVgJoCEdAmafoAXEZSHV9lChoBkdAY/bAUtZmqmgHTegDaAhHQJmpvlKbrkd1fZQoaAZHQGb2Z4fOlftoB03oA2gIR0CZqq/ag261dX2UKGgGR0BvPJgRbr1NaAdNzwJoCEdAma2+pXIU8HV9lChoBkdAXoGTOgQHzGgHTegDaAhHQJmt7hDPWx11fZQoaAZHQGygENWluWNoB03SAWgIR0CZr3WJaaCudX2UKGgGR0BlGTqnm7rcaAdN6ANoCEdAmbGpHRTjvXV9lChoBkdAXF/c8DB/JGgHTegDaAhHQJmyvRCx/ut1fZQoaAZHQG0vARsdkrhoB034AWgIR0CZsyRtxdY5dX2UKGgGR0BxLgVrRBu5aAdNXAFoCEdAmbflfAsTWXV9lChoBkdAb+sX+ERJ3GgHTeUDaAhHQJm4qBXjlxR1fZQoaAZHQHL/aKLsKLNoB03DAWgIR0CZuWYKYzBRdX2UKGgGR0BxvgD9wWFfaAdN/AFoCEdAmb2RBu4wy3V9lChoBkdAbB9O5avA5GgHTZwBaAhHQJnCbrB0p3J1fZQoaAZHQHGxiUPhAGBoB00UAmgIR0CZxtl4TsY3dX2UKGgGR0Bt5uGIsRQKaAdNGwNoCEdAmccpjpcHGHV9lChoBkdAZxHEzfrKNmgHTegDaAhHQJnJDci4axZ1fZQoaAZHQE6ZOpsGgSRoB0vuaAhHQJnPP3fyf+V1fZQoaAZHQGPK3zcynDRoB03oA2gIR0CZ0YtLcsUZdX2UKGgGR0ButnlU6xPgaAdNHgNoCEdAmdWjgVGkOHV9lChoBkdAZJT7qptJnWgHTegDaAhHQJnZIm8dxQ11fZQoaAZHQGKciGFi8WdoB03oA2gIR0CZ3BK/VRUFdX2UKGgGR0Bwp3brTpgUaAdN5QNoCEdAmdzvGIbfg3V9lChoBkdAcjtYJE6T4mgHTbMDaAhHQJnh8R6F/QV1fZQoaAZHQHE30tqYZ2poB003AWgIR0CZ5gsF+uvEdX2UKGgGR0BhmDT+ee4DaAdN6ANoCEdAmeYMneBQN3V9lChoBkdAYdYlt0mtyWgHTegDaAhHQJnmjGBFuvV1fZQoaAZHQHGZWBWgezVoB01xA2gIR0CZ56f6oESvdX2UKGgGR0BIWi+L3sX0aAdL+mgIR0CZ6bHsTnJUdX2UKGgGR0BmDNdPci4baAdN6ANoCEdAmevN1p0wJ3V9lChoBkdAZPMZuyeI22gHTegDaAhHQJnsiTcIqsl1fZQoaAZHQGDEL433pOhoB03oA2gIR0CZ8eQOnVG1dX2UKGgGR0BwKECtA9mpaAdNDgNoCEdAmfHmD6Fds3V9lChoBkdAcJD/0/W1+mgHTbwCaAhHQJn1bE3sHB11fZQoaAZHQG3hhTXJ5mhoB02cA2gIR0CZ9sZpztCzdX2UKGgGR0Bw8Z0OmR/3aAdNnQFoCEdAmfqtLlFMI3V9lChoBkdAYLIRpUPxx2gHTegDaAhHQJn7Rda+vhZ1fZQoaAZHQHCTC4FzMidoB00sAmgIR0CZ/hhpQDV6dX2UKGgGR0Bvgj9bX6InaAdNMwNoCEdAmh2QNLDhtXV9lChoBkdAZUyZR8+iamgHTegDaAhHQJodoLy+YdB1fZQoaAZHQHDN66WgOBloB03SAWgIR0CaJUX7Lt/ndX2UKGgGR0BuphgogFHKaAdNGgJoCEdAmilrUPQOWnV9lChoBkdAY4rrVOKwZGgHTegDaAhHQJorA8GLUCt1fZQoaAZHQG173X7Lt/poB03rAmgIR0CaK7I8QqZudX2UKGgGR0BvwejM3ZPEaAdNBQJoCEdAmi2jqv/za3V9lChoBkdAcGWkv9LpR2gHTeABaAhHQJovTGn4wh51fZQoaAZHQG3Kkk8ifQNoB00uA2gIR0CaMg4XGff5dX2UKGgGR0BnAIfIS13MaAdN6ANoCEdAmjR07GNrCXV9lChoBkdAY3CpWFN+LGgHTegDaAhHQJo08HfMwDh1fZQoaAZHQGdB6UaAFxJoB03oA2gIR0CaNfVlwtJ4dX2UKGgGR0BjtLRplBhQaAdN6ANoCEdAmjopXU6PsHV9lChoBkdAb51sY2sJY2gHTXwBaAhHQJo93R5TqB51fZQoaAZHQHD3ngk1MuhoB03zAmgIR0CaQC/uLJjldX2UKGgGR0BtgXwLE1l5aAdNvQNoCEdAmkI4h2W6b3V9lChoBkdAb5bu+AVfu2gHTfsCaAhHQJpFnhl18st1fZQoaAZHQHE9aciGFi9oB017AmgIR0CaResKsuFpdX2UKGgGR0Bh5YbKifxuaAdN6ANoCEdAmkocn7YTTXV9lChoBkdAQpP5ULlV+GgHS/FoCEdAmkyURBeHBXV9lChoBkdAcKSEd/8VHmgHTegBaAhHQJpNxiYsunN1fZQoaAZHQGTLlTvRZ2ZoB03oA2gIR0CaUVD15B1LdX2UKGgGR0By/mKKpDNRaAdNCQFoCEdAmlK/9tMwlHV9lChoBkdAcRMIldC3PWgHTTsDaAhHQJpS+kWRA8l1fZQoaAZHQG8e90aIeo1oB02EA2gIR0CaWD9F4LThdX2UKGgGR0BvEYGIKtxNaAdNywFoCEdAmliz8+A3DXV9lChoBkdAbTWjTKDCg2gHTYYBaAhHQJpYyXdCVr11fZQoaAZHQHGOqmsNlRRoB03kAmgIR0CaWkUmD15CdX2UKGgGR0BvhsUqQRwqaAdNnANoCEdAmlwVrZamoHV9lChoBkdAcNXL2pQ1rWgHTYoBaAhHQJpcLKNhmXh1fZQoaAZHQGiPLXDm8uloB03oA2gIR0CaXcM2FWXDdX2UKGgGR0BhBILofSx8aAdN6ANoCEdAmmFrvPTodXV9lChoBkdAclT4Fiay8mgHTY8BaAhHQJpieyfL9uR1fZQoaAZHQG4dDst03fhoB00jA2gIR0CaY02ECeVcdX2UKGgGR0BpFzUiILw4aAdN6ANoCEdAmmOiiEg4fnV9lChoBkdAcEher+5vtWgHTXYDaAhHQJpj1RekYXR1fZQoaAZHQG+s5xrBTGZoB01IAWgIR0Caaw5IYm9hdX2UKGgGR0ByCOldkauPaAdNRgJoCEdAmm0ZRTCLuXV9lChoBkdAcWwMuez2OGgHTQ4DaAhHQJpwP8uSOip1fZQoaAZHQHBS5z90ihZoB00bAmgIR0CacPPWhAW0dX2UKGgGR0BrnUOby6MBaAdNuQFoCEdAmnJO9zwMIHV9lChoBkdAb9a4m1IAfmgHTUIDaAhHQJpzmUKRdQh1fZQoaAZHQHC9qiTMaCNoB012AWgIR0CadDeBg/kedX2UKGgGR0BxU4mhM8HOaAdNJwJoCEdAmnUvfXPJJXV9lChoBkdAbbgPbwjMV2gHTakDaAhHQJp8eaOPvKF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 276, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.6.56+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Nov 10 10:07:59 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |