HugeFighter
commited on
PPO LunarLander-v2-1 trained agent commited
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v3.zip +3 -0
- ppo-LunarLander-v3/_stable_baselines3_version +1 -0
- ppo-LunarLander-v3/data +99 -0
- ppo-LunarLander-v3/policy.optimizer.pth +3 -0
- ppo-LunarLander-v3/policy.pth +3 -0
- ppo-LunarLander-v3/pytorch_variables.pth +3 -0
- ppo-LunarLander-v3/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 263.50 +/- 23.24
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c710e535620>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c710e5356c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c710e535760>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c710e535800>", "_build": "<function ActorCriticPolicy._build at 0x7c710e5358a0>", "forward": "<function ActorCriticPolicy.forward at 0x7c710e535940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c710e5359e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c710e535a80>", "_predict": "<function ActorCriticPolicy._predict at 0x7c710e535b20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c710e535bc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c710e535c60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c710e535d00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c711d829580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1737203083850636127, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACp/71HwHU/UsgLvpIprb5ENvi9OiMUOwAAAAAAAAAAMzc1PGrKoT9NnY880faXvipXET1yr0s8AAAAAAAAAADNVNK7cjErP32ts7z5PkO+nuIFPE4BqTwAAAAAAAAAALMEKL2pR0y8MHrtO6PHqDzKxrI9ZQCJvQAAgD8AAIA/JtGpvu+J4D4vjD4+kLVBvkazy7xVr3U9AAAAAAAAAACa8/I8zydqPxBTVzyXkZ2+yTilPDjjqr0AAAAAAAAAAI0a8T0Qm74/1YSkPovfI74zBdk9hp+wPQAAAAAAAAAAgMV1PZJMsjx6DCO+MnRIvhW76rz4iL+7AAAAAAAAAADCnJG+ECLwPoCZez4jhF++i1Q9vfFYrD0AAAAAAAAAALPYSb1su+e7KhH1O3qJuDw/pDE9foGZvQAAgD8AAIA/jcTtPV1dLT9nKh2+MX2MvvhYpDxNTAg9AAAAAAAAAADaBZI97CnYuZ3BL7mJ3ki08amKO7oYTDgAAIA/AAAAAJpMjzx4TKQ+Ksa4Pbd3V77F14Q9urXyvAAAAAAAAAAAmnadPF+ZXT8T5ec7zAWNvlcPRT2MPYq9AAAAAAAAAABt/j6+PHHEPnJo7T1EwkG+FnVnvCVqd7wAAAAAAAAAADNP57tIl7U/GMyzvmFNIz5jzcs7zTkqPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHF+5I+W4ViMAWyUTUMBjAF0lEdAmtI4G6f8M3V9lChoBkdAcVl+AVfu1GgHTVUBaAhHQJrS33wkPc11fZQoaAZHQHHdZPM0P6NoB01LAWgIR0Ca00u6mO2idX2UKGgGR0BRfekDZDiPaAdL/2gIR0Ca04G4ZuQ7dX2UKGgGR0BuE4NVinYQaAdNawFoCEdAmuc56t1ZDHV9lChoBkdAcDOM6zVtoGgHTWwBaAhHQJrn/Fm4Ajp1fZQoaAZHQHDK/H93r2RoB008AWgIR0Ca6Gvy9VWCdX2UKGgGR0Bw7uhDgIhRaAdNSwFoCEdAmuk1hsqJ/HV9lChoBkdAcOglGgBcRmgHTTgBaAhHQJrpYSzw+dN1fZQoaAZHQG+92BJ7LMdoB01mAWgIR0Ca7B4593KTdX2UKGgGR0BtOoFRpDeCaAdN1gFoCEdAmuwrFjurqHV9lChoBkdAXvGsDGLk0mgHTegDaAhHQJrsPBvaURp1fZQoaAZHQHFDiSA6MitoB01MAWgIR0Ca7gUO/cnFdX2UKGgGR0Bs5O9eyAx0aAdNJwFoCEdAmu4dwm3OOnV9lChoBkdAa+hQD3dsSGgHTSIBaAhHQJrvMAFPi1l1fZQoaAZHQHDkLN0NjLBoB01gAWgIR0Ca73Pj4pMIdX2UKGgGR0BwoO1hLGrCaAdNUgFoCEdAmu+uKfnOjnV9lChoBkdAbjU+bmU4aWgHTSYBaAhHQJrv+ozeoDR1fZQoaAZHQG2T29tdiUhoB01YAWgIR0Ca8IPu5SWJdX2UKGgGR0Bvl2rdWQwLaAdNgwFoCEdAmvPoDs+mnHV9lChoBkdAcnTmdRR/E2gHTUQBaAhHQJr0ppxm03R1fZQoaAZHQHGYvKyOaORoB003AWgIR0Ca9Om2LHdXdX2UKGgGR0BwioMlTm4iaAdNQQFoCEdAmvYtsvZh8nV9lChoBkdAclIydnTRY2gHTUEBaAhHQJr2UnTiKix1fZQoaAZHQG4y/IS13MZoB01PAWgIR0Ca+O9ZA6dUdX2UKGgGR0BsIBH09QoDaAdNZgFoCEdAmvnDJlrdnHV9lChoBkdAb/1420iQk2gHTTgBaAhHQJr6leTmnwZ1fZQoaAZHQHEn8vduYQdoB008AWgIR0Ca+3Lfk3judX2UKGgGR0BwuqZ4Oc2BaAdNTQFoCEdAmvuZ2ZAprnV9lChoBkdAbURlg+hXbWgHTUwBaAhHQJr8gs9SuQp1fZQoaAZHQHFRD7655JNoB01nAWgIR0Ca/KhUR3/xdX2UKGgGR0BxBAstkFwDaAdNkgFoCEdAmvzjakAPu3V9lChoBkdAcJv2hIvrW2gHTQ8BaAhHQJr9PRv3rUt1fZQoaAZHQHJhnbh3qzJoB00dAWgIR0Ca/phOP/70dX2UKGgGR0BtzOcx0uDjaAdNMwFoCEdAmv8GOMl1KXV9lChoBkdAb+Q0Z3s5XGgHTfQBaAhHQJr/50knkT91fZQoaAZHQG+jbDdgv11oB01HAWgIR0CbATBjWkJsdX2UKGgGR0Bxn0sBhhH9aAdNVQJoCEdAmwF3nEETx3V9lChoBkdAcKuwblzU7WgHTRIBaAhHQJsCo57w8W91fZQoaAZHQHCDLtVrAQBoB01DAWgIR0CbBTjxCpm3dX2UKGgGR0Bva7fk3juKaAdNKQFoCEdAmwU95+pfhXV9lChoBkdAa+b4CZF5OmgHTR4BaAhHQJsF+0v4/NZ1fZQoaAZHQHDXtT1kDp1oB005AWgIR0CbBtSOinHedX2UKGgGR0BxU3KU3XI2aAdNOwFoCEdAmwdYHcDbJ3V9lChoBkdAcUjlOoHcDmgHTXwBaAhHQJsIIyVObiJ1fZQoaAZHQG43oxpL26FoB00tAWgIR0CbCOBz3h4udX2UKGgGR0BulSkqMFUyaAdNdgFoCEdAmwnrzTWoWHV9lChoBkdAcZZfDk2gnWgHTUEBaAhHQJsKIMspXp51fZQoaAZHQG9OCSq2jO9oB033AWgIR0CbCjRrrPdEdX2UKGgGR0BxA6o/A0sOaAdNLQFoCEdAmwpr1EmY0HV9lChoBkdAcFQJzDGcWmgHTTABaAhHQJscvu/k/8l1fZQoaAZHQGDHMxXXAdpoB03oA2gIR0CbHeJm/WUbdX2UKGgGR0Btu+GEf1YhaAdNJAFoCEdAmx4cr3CbdHV9lChoBkdAbeMbT+ee4GgHTRkBaAhHQJshpHJ9y951fZQoaAZHQHF1PIwM6R1oB00xAWgIR0CbIc55Z8rqdX2UKGgGR0BwPxdE9dNWaAdNPQFoCEdAmyJqUJOWSnV9lChoBkdAcDOvQnhKlGgHTSIBaAhHQJslA6vJRwZ1fZQoaAZHQHCwhrzoUztoB00iAWgIR0CbJiv2oNutdX2UKGgGR0BvGiUJOWSmaAdNbgFoCEdAmycrMPjGUHV9lChoBkdAcDQy3Td+HGgHTWsBaAhHQJsnlVU+9rZ1fZQoaAZHQHADeUQkHD9oB00kAmgIR0CbKFUOuq3mdX2UKGgGR0Bst9t0mtyQaAdNSQFoCEdAmykU7nxJ/XV9lChoBkdAcR+l6qsEJWgHTUYBaAhHQJspECaJAMV1fZQoaAZHQG/NHAIppexoB01GAWgIR0CbKUQizLOidX2UKGgGR0BwJkmplz2faAdNWwFoCEdAmylv5Lytm3V9lChoBkdAbrcA/9pAU2gHTSEBaAhHQJsqODoQnQZ1fZQoaAZHQHDZIcinpB5oB01AAWgIR0CbKlWP91lodX2UKGgGR0BbLhO+IuXeaAdN6ANoCEdAmyuiGBWge3V9lChoBkdATaZ4IKMNt2gHTQIBaAhHQJssPCZWq951fZQoaAZHQHJph3aBZp1oB01lAWgIR0CbLFJ2MbWFdX2UKGgGR0BOkSi/O+qSaAdNJgFoCEdAmyza9PDYRXV9lChoBkdAbv4F7laKUGgHTUgBaAhHQJsttpN9H+Z1fZQoaAZHQG9gd8Aq/dtoB00FAWgIR0CbLvbI91U3dX2UKGgGR0BvueS0Sh8IaAdNUgFoCEdAmzA55VwPy3V9lChoBkdAccR2WpqASWgHTSQBaAhHQJswYsDnvDx1fZQoaAZHQG6iiuloDgZoB01QAWgIR0CbMOIdlum8dX2UKGgGR0BxbtX6qKgqaAdNFgFoCEdAmzFYdlum8HV9lChoBkdAcceJqZc9n2gHTUkBaAhHQJszmAtnPE91fZQoaAZHQEv9XIU8FINoB0vkaAhHQJszp8KG+K11fZQoaAZHQG46JQUHpr1oB00qAWgIR0CbM6iG34KydX2UKGgGR0BsHczGgi/xaAdNLwFoCEdAmzOyb6P8ynV9lChoBkdAcml7Xg9/0GgHS/9oCEdAmzRox59mYnV9lChoBkdAcVHN0vGp/GgHTXABaAhHQJs0oRdyDI11fZQoaAZHQHMMS4axX4loB00lAWgIR0CbNN7a7EpBdX2UKGgGR0Byee89Oh0yaAdNlwFoCEdAmzTuCK77K3V9lChoBkdAb0Xz5GjKxWgHTToBaAhHQJs2sdmxt551fZQoaAZHQG3iU/W1+iJoB008AWgIR0CbN6p6QeV+dX2UKGgGR0BseYhdMTN/aAdNPwFoCEdAmzj7BXS0B3V9lChoBkdAcgJ2xptaZGgHTSABaAhHQJs5w20iQkp1fZQoaAZHQHJtGs3hn8NoB01bAWgIR0CbO1pTdcjadX2UKGgGR0ByW4cR15jZaAdNWwJoCEdAmzuZWzWwvHV9lChoBkdAbMfVd5Y5k2gHTUUBaAhHQJs7lJcxCY11fZQoaAZHQG+6u9eyAx1oB00NAWgIR0CbO9VuaWondX2UKGgGR0BxqFxdY4hmaAdNKQFoCEdAmzzC0jTrmnV9lChoBkdAb9Aki2UjcGgHTTQBaAhHQJs9QTDfm9x1fZQoaAZHQG97aBAfMfRoB00kAWgIR0CbPgCSRr8BdX2UKGgGR0BwqAT238XOaAdNLgFoCEdAmz5pdnkDIXV9lChoBkdAcdb1FYuCgGgHTVoBaAhHQJs+eZ3LV4J1fZQoaAZHQHAt+sT37DVoB01PAWgIR0CbPv+lCTlldX2UKGgGR0By4O7dznzQaAdN7gFoCEdAmz/L+YMOPXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53cbf62da80a792785604f227a88aef41224755be67ad56cf09d4572b8e56af1
|
3 |
+
size 148132
|
ppo-LunarLander-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v3/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c710e535620>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c710e5356c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c710e535760>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c710e535800>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c710e5358a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c710e535940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c710e5359e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c710e535a80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c710e535b20>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c710e535bc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c710e535c60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c710e535d00>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c711d829580>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1737203083850636127,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACp/71HwHU/UsgLvpIprb5ENvi9OiMUOwAAAAAAAAAAMzc1PGrKoT9NnY880faXvipXET1yr0s8AAAAAAAAAADNVNK7cjErP32ts7z5PkO+nuIFPE4BqTwAAAAAAAAAALMEKL2pR0y8MHrtO6PHqDzKxrI9ZQCJvQAAgD8AAIA/JtGpvu+J4D4vjD4+kLVBvkazy7xVr3U9AAAAAAAAAACa8/I8zydqPxBTVzyXkZ2+yTilPDjjqr0AAAAAAAAAAI0a8T0Qm74/1YSkPovfI74zBdk9hp+wPQAAAAAAAAAAgMV1PZJMsjx6DCO+MnRIvhW76rz4iL+7AAAAAAAAAADCnJG+ECLwPoCZez4jhF++i1Q9vfFYrD0AAAAAAAAAALPYSb1su+e7KhH1O3qJuDw/pDE9foGZvQAAgD8AAIA/jcTtPV1dLT9nKh2+MX2MvvhYpDxNTAg9AAAAAAAAAADaBZI97CnYuZ3BL7mJ3ki08amKO7oYTDgAAIA/AAAAAJpMjzx4TKQ+Ksa4Pbd3V77F14Q9urXyvAAAAAAAAAAAmnadPF+ZXT8T5ec7zAWNvlcPRT2MPYq9AAAAAAAAAABt/j6+PHHEPnJo7T1EwkG+FnVnvCVqd7wAAAAAAAAAADNP57tIl7U/GMyzvmFNIz5jzcs7zTkqPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHF+5I+W4ViMAWyUTUMBjAF0lEdAmtI4G6f8M3V9lChoBkdAcVl+AVfu1GgHTVUBaAhHQJrS33wkPc11fZQoaAZHQHHdZPM0P6NoB01LAWgIR0Ca00u6mO2idX2UKGgGR0BRfekDZDiPaAdL/2gIR0Ca04G4ZuQ7dX2UKGgGR0BuE4NVinYQaAdNawFoCEdAmuc56t1ZDHV9lChoBkdAcDOM6zVtoGgHTWwBaAhHQJrn/Fm4Ajp1fZQoaAZHQHDK/H93r2RoB008AWgIR0Ca6Gvy9VWCdX2UKGgGR0Bw7uhDgIhRaAdNSwFoCEdAmuk1hsqJ/HV9lChoBkdAcOglGgBcRmgHTTgBaAhHQJrpYSzw+dN1fZQoaAZHQG+92BJ7LMdoB01mAWgIR0Ca7B4593KTdX2UKGgGR0BtOoFRpDeCaAdN1gFoCEdAmuwrFjurqHV9lChoBkdAXvGsDGLk0mgHTegDaAhHQJrsPBvaURp1fZQoaAZHQHFDiSA6MitoB01MAWgIR0Ca7gUO/cnFdX2UKGgGR0Bs5O9eyAx0aAdNJwFoCEdAmu4dwm3OOnV9lChoBkdAa+hQD3dsSGgHTSIBaAhHQJrvMAFPi1l1fZQoaAZHQHDkLN0NjLBoB01gAWgIR0Ca73Pj4pMIdX2UKGgGR0BwoO1hLGrCaAdNUgFoCEdAmu+uKfnOjnV9lChoBkdAbjU+bmU4aWgHTSYBaAhHQJrv+ozeoDR1fZQoaAZHQG2T29tdiUhoB01YAWgIR0Ca8IPu5SWJdX2UKGgGR0Bvl2rdWQwLaAdNgwFoCEdAmvPoDs+mnHV9lChoBkdAcnTmdRR/E2gHTUQBaAhHQJr0ppxm03R1fZQoaAZHQHGYvKyOaORoB003AWgIR0Ca9Om2LHdXdX2UKGgGR0BwioMlTm4iaAdNQQFoCEdAmvYtsvZh8nV9lChoBkdAclIydnTRY2gHTUEBaAhHQJr2UnTiKix1fZQoaAZHQG4y/IS13MZoB01PAWgIR0Ca+O9ZA6dUdX2UKGgGR0BsIBH09QoDaAdNZgFoCEdAmvnDJlrdnHV9lChoBkdAb/1420iQk2gHTTgBaAhHQJr6leTmnwZ1fZQoaAZHQHEn8vduYQdoB008AWgIR0Ca+3Lfk3judX2UKGgGR0BwuqZ4Oc2BaAdNTQFoCEdAmvuZ2ZAprnV9lChoBkdAbURlg+hXbWgHTUwBaAhHQJr8gs9SuQp1fZQoaAZHQHFRD7655JNoB01nAWgIR0Ca/KhUR3/xdX2UKGgGR0BxBAstkFwDaAdNkgFoCEdAmvzjakAPu3V9lChoBkdAcJv2hIvrW2gHTQ8BaAhHQJr9PRv3rUt1fZQoaAZHQHJhnbh3qzJoB00dAWgIR0Ca/phOP/70dX2UKGgGR0BtzOcx0uDjaAdNMwFoCEdAmv8GOMl1KXV9lChoBkdAb+Q0Z3s5XGgHTfQBaAhHQJr/50knkT91fZQoaAZHQG+jbDdgv11oB01HAWgIR0CbATBjWkJsdX2UKGgGR0Bxn0sBhhH9aAdNVQJoCEdAmwF3nEETx3V9lChoBkdAcKuwblzU7WgHTRIBaAhHQJsCo57w8W91fZQoaAZHQHCDLtVrAQBoB01DAWgIR0CbBTjxCpm3dX2UKGgGR0Bva7fk3juKaAdNKQFoCEdAmwU95+pfhXV9lChoBkdAa+b4CZF5OmgHTR4BaAhHQJsF+0v4/NZ1fZQoaAZHQHDXtT1kDp1oB005AWgIR0CbBtSOinHedX2UKGgGR0BxU3KU3XI2aAdNOwFoCEdAmwdYHcDbJ3V9lChoBkdAcUjlOoHcDmgHTXwBaAhHQJsIIyVObiJ1fZQoaAZHQG43oxpL26FoB00tAWgIR0CbCOBz3h4udX2UKGgGR0BulSkqMFUyaAdNdgFoCEdAmwnrzTWoWHV9lChoBkdAcZZfDk2gnWgHTUEBaAhHQJsKIMspXp51fZQoaAZHQG9OCSq2jO9oB033AWgIR0CbCjRrrPdEdX2UKGgGR0BxA6o/A0sOaAdNLQFoCEdAmwpr1EmY0HV9lChoBkdAcFQJzDGcWmgHTTABaAhHQJscvu/k/8l1fZQoaAZHQGDHMxXXAdpoB03oA2gIR0CbHeJm/WUbdX2UKGgGR0Btu+GEf1YhaAdNJAFoCEdAmx4cr3CbdHV9lChoBkdAbeMbT+ee4GgHTRkBaAhHQJshpHJ9y951fZQoaAZHQHF1PIwM6R1oB00xAWgIR0CbIc55Z8rqdX2UKGgGR0BwPxdE9dNWaAdNPQFoCEdAmyJqUJOWSnV9lChoBkdAcDOvQnhKlGgHTSIBaAhHQJslA6vJRwZ1fZQoaAZHQHCwhrzoUztoB00iAWgIR0CbJiv2oNutdX2UKGgGR0BvGiUJOWSmaAdNbgFoCEdAmycrMPjGUHV9lChoBkdAcDQy3Td+HGgHTWsBaAhHQJsnlVU+9rZ1fZQoaAZHQHADeUQkHD9oB00kAmgIR0CbKFUOuq3mdX2UKGgGR0Bst9t0mtyQaAdNSQFoCEdAmykU7nxJ/XV9lChoBkdAcR+l6qsEJWgHTUYBaAhHQJspECaJAMV1fZQoaAZHQG/NHAIppexoB01GAWgIR0CbKUQizLOidX2UKGgGR0BwJkmplz2faAdNWwFoCEdAmylv5Lytm3V9lChoBkdAbrcA/9pAU2gHTSEBaAhHQJsqODoQnQZ1fZQoaAZHQHDZIcinpB5oB01AAWgIR0CbKlWP91lodX2UKGgGR0BbLhO+IuXeaAdN6ANoCEdAmyuiGBWge3V9lChoBkdATaZ4IKMNt2gHTQIBaAhHQJssPCZWq951fZQoaAZHQHJph3aBZp1oB01lAWgIR0CbLFJ2MbWFdX2UKGgGR0BOkSi/O+qSaAdNJgFoCEdAmyza9PDYRXV9lChoBkdAbv4F7laKUGgHTUgBaAhHQJsttpN9H+Z1fZQoaAZHQG9gd8Aq/dtoB00FAWgIR0CbLvbI91U3dX2UKGgGR0BvueS0Sh8IaAdNUgFoCEdAmzA55VwPy3V9lChoBkdAccR2WpqASWgHTSQBaAhHQJswYsDnvDx1fZQoaAZHQG6iiuloDgZoB01QAWgIR0CbMOIdlum8dX2UKGgGR0BxbtX6qKgqaAdNFgFoCEdAmzFYdlum8HV9lChoBkdAcceJqZc9n2gHTUkBaAhHQJszmAtnPE91fZQoaAZHQEv9XIU8FINoB0vkaAhHQJszp8KG+K11fZQoaAZHQG46JQUHpr1oB00qAWgIR0CbM6iG34KydX2UKGgGR0BsHczGgi/xaAdNLwFoCEdAmzOyb6P8ynV9lChoBkdAcml7Xg9/0GgHS/9oCEdAmzRox59mYnV9lChoBkdAcVHN0vGp/GgHTXABaAhHQJs0oRdyDI11fZQoaAZHQHMMS4axX4loB00lAWgIR0CbNN7a7EpBdX2UKGgGR0Byee89Oh0yaAdNlwFoCEdAmzTuCK77K3V9lChoBkdAb0Xz5GjKxWgHTToBaAhHQJs2sdmxt551fZQoaAZHQG3iU/W1+iJoB008AWgIR0CbN6p6QeV+dX2UKGgGR0BseYhdMTN/aAdNPwFoCEdAmzj7BXS0B3V9lChoBkdAcgJ2xptaZGgHTSABaAhHQJs5w20iQkp1fZQoaAZHQHJtGs3hn8NoB01bAWgIR0CbO1pTdcjadX2UKGgGR0ByW4cR15jZaAdNWwJoCEdAmzuZWzWwvHV9lChoBkdAbMfVd5Y5k2gHTUUBaAhHQJs7lJcxCY11fZQoaAZHQG+6u9eyAx1oB00NAWgIR0CbO9VuaWondX2UKGgGR0BxqFxdY4hmaAdNKQFoCEdAmzzC0jTrmnV9lChoBkdAb9Aki2UjcGgHTTQBaAhHQJs9QTDfm9x1fZQoaAZHQG97aBAfMfRoB00kAWgIR0CbPgCSRr8BdX2UKGgGR0BwqAT238XOaAdNLgFoCEdAmz5pdnkDIXV9lChoBkdAcdb1FYuCgGgHTVoBaAhHQJs+eZ3LV4J1fZQoaAZHQHAt+sT37DVoB01PAWgIR0CbPv+lCTlldX2UKGgGR0By4O7dznzQaAdN7gFoCEdAmz/L+YMOPXVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b648c803ef9a81f580d5e86328aa4788130474eefcd27b43bfcbf211a594780
|
3 |
+
size 88362
|
ppo-LunarLander-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc9f8065e197292c3de18eaa9a1744b7916fcc0b43371f3aded9370172d1d27d
|
3 |
+
size 43762
|
ppo-LunarLander-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.11.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (184 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 263.4964348, "std_reward": 23.243881387700473, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-18T12:49:43.633811"}
|