Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v1.zip +3 -0
- ppo-LunarLander-v1/_stable_baselines3_version +1 -0
- ppo-LunarLander-v1/data +99 -0
- ppo-LunarLander-v1/policy.optimizer.pth +3 -0
- ppo-LunarLander-v1/policy.pth +3 -0
- ppo-LunarLander-v1/pytorch_variables.pth +3 -0
- ppo-LunarLander-v1/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 290.32 +/- 15.84
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8bc7cf6e60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8bc7cf6ef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8bc7cf6f80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8bc7cf7010>", "_build": "<function ActorCriticPolicy._build at 0x7f8bc7cf70a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8bc7cf7130>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8bc7cf71c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8bc7cf7250>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8bc7cf72e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8bc7cf7370>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8bc7cf7400>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8bc7cf7490>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8bc7cf2140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687305699174824276, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNwSr094Q+7YnZdO3Z+ozySSYK8ROKLPQAAgD8AAIA/M4jUva6BgLqCCBS4pmblsmMpPjspcyw3AACAPwAAAADAKgq+iCXEPibLqz5FNNG+lBc1PYIzFz4AAAAAAAAAAGbWND238HE/ouz7PdulQb9I6oY9i3j0PQAAAAAAAAAAmvYkPeyJorkqdjc0IB+fLmvL47nq/6KzAACAPwAAgD/m0OG9CHRaPyuOKL5axBC/w3lUviMr0r0AAAAAAAAAAF3ViT7CENw+bAu2vW0E7r5PdqA+oLIOvgAAAAAAAAAAwO7hvTX/mz8zj4C+8lI+v4MJGb7fsAW+AAAAAAAAAACtqny+RmVfP/LEwL5rsja/Z7npvogg0r0AAAAAAAAAAIaLBj46AIc+woOQviYu1r598e46iW0zvQAAAAAAAAAAZkQPvdJ3u7vOjmk+WbImvHTOCr0HNgc/AACAPwAAAABmreO8X8dDPtHRnD2Ze9++qiwuPYjcST0AAAAAAAAAAPOQrD1cY0W6y7dDOQmVXLMLvF67vbdiuAAAgD8AAIA/lk+0vq2Edj9FvJi+1Bgivxf4B7/25oS9AAAAAAAAAAAz/8Q7/yocP19SR7y+NSG/YidJPdr1+zsAAAAAAAAAAE0nCj0uFZG8IX2WveawgzzmJgU+w5tSvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMJ3CKrJbOMAWyUS7SMAXSUR0Cn0mhn8KoidX2UKGgGR0AiyIVM23rlaAdLXmgIR0Cn0orzwtrcdX2UKGgGR0BzcMc7yQPqaAdL12gIR0Cn0o4zBRAKdX2UKGgGR0Bx4otHxz7uaAdL3mgIR0Cn0o2hAWzodX2UKGgGR0BzVoxvegtfaAdL6mgIR0Cn0pevZAY6dX2UKGgGR0BxDRJqZc9oaAdLpGgIR0Cn0rXsolUqdX2UKGgGR0Bxi6FnIyTIaAdLtWgIR0Cn0uypaRp2dX2UKGgGR0BxQTgqEvkBaAdLxGgIR0Cn0yOMERradX2UKGgGR0By6q/Ho5ggaAdLvmgIR0Cn0yen62v0dX2UKGgGR0BvH8+RoysTaAdLvGgIR0Cn00tsN2C/dX2UKGgGR0BwXHyvs7dSaAdLu2gIR0Cn03DhUBGQdX2UKGgGR0Bxlxpg1FYuaAdLuGgIR0Cn03UdJaq0dX2UKGgGR0BzItK+SKWLaAdLuGgIR0Cn03uJk5IZdX2UKGgGR0BwKN/smfGuaAdLwWgIR0Cn1C7CBPKudX2UKGgGR0Bx1tnqVyFPaAdLt2gIR0Cn1FtYB/7SdX2UKGgGR0Byjz225QP7aAdL1WgIR0Cn1GLZJ04jdX2UKGgGR0BzF924d6syaAdLzGgIR0Cn1G3okiUxdX2UKGgGR0Bvk6TMaCL/aAdLwGgIR0Cn1HUKiO/+dX2UKGgGR0ByFs/FBIFvaAdLv2gIR0Cn1HwvYe1bdX2UKGgGR0BxiBHf/FR6aAdLsWgIR0Cn1Hv3JxNqdX2UKGgGR0BynwQNCqp+aAdLyWgIR0Cn1IhjWkJsdX2UKGgGR0BxN6j3225QaAdLnmgIR0Cn1Lfd69kCdX2UKGgGR0BytJ6KLsKLaAdLt2gIR0Cn1PtZvDP4dX2UKGgGR0BxCIcfeUILaAdL1WgIR0Cn1QyCvovBdX2UKGgGR0Bxxeus90RwaAdLy2gIR0Cn1XkHlfZ3dX2UKGgGR0Byqv8Jlar4aAdL0mgIR0Cn1ZZJkGzKdX2UKGgGR0ByYUH1OCXhaAdL02gIR0Cn1ZLzwtrcdX2UKGgGR0BwjyBtk4FSaAdLqWgIR0Cn1eDJlrdndX2UKGgGR0Bxca+0w8GLaAdNCgFoCEdAp9X2so2GZnV9lChoBkdAcKY1FYuCgGgHS8BoCEdAp9ZLMmnfmHV9lChoBkdAchRHMUypJmgHS79oCEdAp9Za+8Gs3nV9lChoBkdAcXhEYfnwHGgHS79oCEdAp9Z4TM7lrHV9lChoBkdAclvNWluWKWgHS9doCEdAp9aUV8CxNnV9lChoBkdAcpcAeaKDTWgHS9RoCEdAp9afLaEi+3V9lChoBkdAclokLQXyiGgHS9ZoCEdAp9arr1M/QnV9lChoBkdAc00M495hSmgHS8BoCEdAp9a2hPCVKXV9lChoBkdAbvc5avA442gHS9xoCEdAp9a7ORkmQnV9lChoBkdAcQLquKXOW2gHS7NoCEdAp9bkinpB5XV9lChoBkdAcQVyB06o2mgHS9poCEdAp9c0cS5AhXV9lChoBkdAcSCBikO7QWgHS7poCEdAp9eCScLBsXV9lChoBkdAcBPMbFS88WgHS69oCEdAp9fOhqTKT3V9lChoBkdAccwtTkyULWgHS+FoCEdAp9fTLGJemnV9lChoBkdAcbqxtpEhJWgHS99oCEdAp9fpAnlXBHV9lChoBkdAci2eBg/kemgHS6doCEdAp9gcgIQe3nV9lChoBkdAbmavMbFS9GgHS69oCEdAp9gjCaZx73V9lChoBkdAcxhdYnv2G2gHS+doCEdAp9hXpyIYWXV9lChoBkdAcLUHS4OMEWgHS8NoCEdAp9inkDIRy3V9lChoBkdAQ4WQuEmICWgHS2ZoCEdAp9imxlg+hXV9lChoBkdAc7mZ/kNnXmgHS79oCEdAp9i0QbuMM3V9lChoBkdAdBXIC2c8T2gHS8toCEdAp9jHpOerdXV9lChoBkdAcxuQOFxn4GgHS8toCEdAp9jfUF0PpnV9lChoBkdAc2npdKNADGgHS+5oCEdAp9kC9XcQAnV9lChoBkdAcO+nhsImgWgHS8RoCEdAp9kCvV3EAHV9lChoBkdAcuFvYODraGgHS+RoCEdAp9kjqD9OynV9lChoBkdAZbCWszVMEmgHTegDaAhHQKfZNOjZcs11fZQoaAZHQHC2oS+QEIRoB0vRaAhHQKfZbzXBgu11fZQoaAZHQHC8QFLWZqpoB0uoaAhHQKfZjwvxpcp1fZQoaAZHQHC2oc3l0YFoB0ufaAhHQKfZjr56+nJ1fZQoaAZHQHJdykO7QLNoB0uraAhHQKfaDGgBcRl1fZQoaAZHQHLBhRZU1htoB0u9aAhHQKfaDe0G/vh1fZQoaAZHQHLp/yGzru9oB0vbaAhHQKfaEed07r91fZQoaAZHQHHsf4IrvstoB0vOaAhHQKfaMwM6RyR1fZQoaAZHQHFfnBP9DQZoB0ugaAhHQKfaRItlI3B1fZQoaAZHQHADVhoduHhoB0uwaAhHQKfalgogFHJ1fZQoaAZHQG9bJZntfHBoB0uraAhHQKfaqs3AEdN1fZQoaAZHQHC+obXHzYpoB0vPaAhHQKfasSHuZ1F1fZQoaAZHQHLSIrz5GjNoB0uvaAhHQKfatb9If8x1fZQoaAZHQHLedVrAP/doB0vIaAhHQKfavv5xiod1fZQoaAZHQHMjfm9xp+NoB0vYaAhHQKfayS6DoQp1fZQoaAZHQHIgFHWjGkxoB0vBaAhHQKfa/HJcPe51fZQoaAZHQHOcSWAwwkBoB0vFaAhHQKfbFV5rxiJ1fZQoaAZHQHGlWyTpxFRoB0vDaAhHQKfbSkC3gDR1fZQoaAZHQHCOhmwqy4ZoB0u7aAhHQKfbV+1Bt1p1fZQoaAZHQHFSHktEofFoB0u6aAhHQKfbVX+VC5V1fZQoaAZHQHCsf642CNFoB0uyaAhHQKfbwyHEdeZ1fZQoaAZHQHBKzsUqQRxoB0ukaAhHQKfb0nl4keJ1fZQoaAZHQHIwnOW0JF9oB0vBaAhHQKfb5U8V58l1fZQoaAZHQHHTNMwlByFoB0vNaAhHQKfcBKHwgDB1fZQoaAZHQHEDuRLbpNdoB0vDaAhHQKfcEJRfnfV1fZQoaAZHQG59Hyd4FA5oB0u8aAhHQKfcdq6e5Fx1fZQoaAZHQHORDpHI6sBoB0u6aAhHQKfcfQtz0Yl1fZQoaAZHQHIdePq9oOBoB0vGaAhHQKfcfLkCFK11fZQoaAZHQHGPxxLkCFNoB0vTaAhHQKfcuNlyzX11fZQoaAZHQHGGez6ab4JoB0vRaAhHQKfcwSZjQRh1fZQoaAZHQHNr/luFYdRoB0u5aAhHQKfcy/FBIFx1fZQoaAZHQHKauIyj59FoB0vbaAhHQKfc4whW5pd1fZQoaAZHQG8rwYUFjd5oB0vDaAhHQKfc+86mwaB1fZQoaAZHQHLQqOT7l7toB0u+aAhHQKfdMjM3ZPF1fZQoaAZHQHDu5IDoyKxoB0u+aAhHQKfdL4WUKRd1fZQoaAZHQHNOw62fChxoB0vJaAhHQKfdPsqJ/G51fZQoaAZHQHAoCliz9jxoB0u4aAhHQKfdrIS13MZ1fZQoaAZHQHCtxp1zQu5oB0vKaAhHQKfduynk1dh1fZQoaAZHQHFwDJuEVWVoB0uwaAhHQKfdx0lqrR11fZQoaAZHQHHcnMdLg4xoB0vKaAhHQKfd+fdRBNV1fZQoaAZHQHJSjgl4TsZoB0viaAhHQKfeBDCP6sR1fZQoaAZHQHNknIuGsWBoB0uwaAhHQKfeKi9qUNd1fZQoaAZHQG/o5bQkX1toB0u3aAhHQKfeO/7BO591fZQoaAZHQHGomyTpxFRoB0ueaAhHQKfeSRlHz6J1fZQoaAZHQHMDnR9gF5hoB0vBaAhHQKfeTjvuw5h1fZQoaAZHQHH7OZ9d/rloB0uwaAhHQKfebVvuPWB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 660, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d533e1c58ec066d413275620be09c103fc48a6c0adb5f7425cfc708e4a5cf000
|
3 |
+
size 146626
|
ppo-LunarLander-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v1/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8bc7cf6e60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8bc7cf6ef0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8bc7cf6f80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8bc7cf7010>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8bc7cf70a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8bc7cf7130>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8bc7cf71c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8bc7cf7250>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8bc7cf72e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8bc7cf7370>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8bc7cf7400>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8bc7cf7490>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f8bc7cf2140>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2031616,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1687305699174824276,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNwSr094Q+7YnZdO3Z+ozySSYK8ROKLPQAAgD8AAIA/M4jUva6BgLqCCBS4pmblsmMpPjspcyw3AACAPwAAAADAKgq+iCXEPibLqz5FNNG+lBc1PYIzFz4AAAAAAAAAAGbWND238HE/ouz7PdulQb9I6oY9i3j0PQAAAAAAAAAAmvYkPeyJorkqdjc0IB+fLmvL47nq/6KzAACAPwAAgD/m0OG9CHRaPyuOKL5axBC/w3lUviMr0r0AAAAAAAAAAF3ViT7CENw+bAu2vW0E7r5PdqA+oLIOvgAAAAAAAAAAwO7hvTX/mz8zj4C+8lI+v4MJGb7fsAW+AAAAAAAAAACtqny+RmVfP/LEwL5rsja/Z7npvogg0r0AAAAAAAAAAIaLBj46AIc+woOQviYu1r598e46iW0zvQAAAAAAAAAAZkQPvdJ3u7vOjmk+WbImvHTOCr0HNgc/AACAPwAAAABmreO8X8dDPtHRnD2Ze9++qiwuPYjcST0AAAAAAAAAAPOQrD1cY0W6y7dDOQmVXLMLvF67vbdiuAAAgD8AAIA/lk+0vq2Edj9FvJi+1Bgivxf4B7/25oS9AAAAAAAAAAAz/8Q7/yocP19SR7y+NSG/YidJPdr1+zsAAAAAAAAAAE0nCj0uFZG8IX2WveawgzzmJgU+w5tSvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMJ3CKrJbOMAWyUS7SMAXSUR0Cn0mhn8KoidX2UKGgGR0AiyIVM23rlaAdLXmgIR0Cn0orzwtrcdX2UKGgGR0BzcMc7yQPqaAdL12gIR0Cn0o4zBRAKdX2UKGgGR0Bx4otHxz7uaAdL3mgIR0Cn0o2hAWzodX2UKGgGR0BzVoxvegtfaAdL6mgIR0Cn0pevZAY6dX2UKGgGR0BxDRJqZc9oaAdLpGgIR0Cn0rXsolUqdX2UKGgGR0Bxi6FnIyTIaAdLtWgIR0Cn0uypaRp2dX2UKGgGR0BxQTgqEvkBaAdLxGgIR0Cn0yOMERradX2UKGgGR0By6q/Ho5ggaAdLvmgIR0Cn0yen62v0dX2UKGgGR0BvH8+RoysTaAdLvGgIR0Cn00tsN2C/dX2UKGgGR0BwXHyvs7dSaAdLu2gIR0Cn03DhUBGQdX2UKGgGR0Bxlxpg1FYuaAdLuGgIR0Cn03UdJaq0dX2UKGgGR0BzItK+SKWLaAdLuGgIR0Cn03uJk5IZdX2UKGgGR0BwKN/smfGuaAdLwWgIR0Cn1C7CBPKudX2UKGgGR0Bx1tnqVyFPaAdLt2gIR0Cn1FtYB/7SdX2UKGgGR0Byjz225QP7aAdL1WgIR0Cn1GLZJ04jdX2UKGgGR0BzF924d6syaAdLzGgIR0Cn1G3okiUxdX2UKGgGR0Bvk6TMaCL/aAdLwGgIR0Cn1HUKiO/+dX2UKGgGR0ByFs/FBIFvaAdLv2gIR0Cn1HwvYe1bdX2UKGgGR0BxiBHf/FR6aAdLsWgIR0Cn1Hv3JxNqdX2UKGgGR0BynwQNCqp+aAdLyWgIR0Cn1IhjWkJsdX2UKGgGR0BxN6j3225QaAdLnmgIR0Cn1Lfd69kCdX2UKGgGR0BytJ6KLsKLaAdLt2gIR0Cn1PtZvDP4dX2UKGgGR0BxCIcfeUILaAdL1WgIR0Cn1QyCvovBdX2UKGgGR0Bxxeus90RwaAdLy2gIR0Cn1XkHlfZ3dX2UKGgGR0Byqv8Jlar4aAdL0mgIR0Cn1ZZJkGzKdX2UKGgGR0ByYUH1OCXhaAdL02gIR0Cn1ZLzwtrcdX2UKGgGR0BwjyBtk4FSaAdLqWgIR0Cn1eDJlrdndX2UKGgGR0Bxca+0w8GLaAdNCgFoCEdAp9X2so2GZnV9lChoBkdAcKY1FYuCgGgHS8BoCEdAp9ZLMmnfmHV9lChoBkdAchRHMUypJmgHS79oCEdAp9Za+8Gs3nV9lChoBkdAcXhEYfnwHGgHS79oCEdAp9Z4TM7lrHV9lChoBkdAclvNWluWKWgHS9doCEdAp9aUV8CxNnV9lChoBkdAcpcAeaKDTWgHS9RoCEdAp9afLaEi+3V9lChoBkdAclokLQXyiGgHS9ZoCEdAp9arr1M/QnV9lChoBkdAc00M495hSmgHS8BoCEdAp9a2hPCVKXV9lChoBkdAbvc5avA442gHS9xoCEdAp9a7ORkmQnV9lChoBkdAcQLquKXOW2gHS7NoCEdAp9bkinpB5XV9lChoBkdAcQVyB06o2mgHS9poCEdAp9c0cS5AhXV9lChoBkdAcSCBikO7QWgHS7poCEdAp9eCScLBsXV9lChoBkdAcBPMbFS88WgHS69oCEdAp9fOhqTKT3V9lChoBkdAccwtTkyULWgHS+FoCEdAp9fTLGJemnV9lChoBkdAcbqxtpEhJWgHS99oCEdAp9fpAnlXBHV9lChoBkdAci2eBg/kemgHS6doCEdAp9gcgIQe3nV9lChoBkdAbmavMbFS9GgHS69oCEdAp9gjCaZx73V9lChoBkdAcxhdYnv2G2gHS+doCEdAp9hXpyIYWXV9lChoBkdAcLUHS4OMEWgHS8NoCEdAp9inkDIRy3V9lChoBkdAQ4WQuEmICWgHS2ZoCEdAp9imxlg+hXV9lChoBkdAc7mZ/kNnXmgHS79oCEdAp9i0QbuMM3V9lChoBkdAdBXIC2c8T2gHS8toCEdAp9jHpOerdXV9lChoBkdAcxuQOFxn4GgHS8toCEdAp9jfUF0PpnV9lChoBkdAc2npdKNADGgHS+5oCEdAp9kC9XcQAnV9lChoBkdAcO+nhsImgWgHS8RoCEdAp9kCvV3EAHV9lChoBkdAcuFvYODraGgHS+RoCEdAp9kjqD9OynV9lChoBkdAZbCWszVMEmgHTegDaAhHQKfZNOjZcs11fZQoaAZHQHC2oS+QEIRoB0vRaAhHQKfZbzXBgu11fZQoaAZHQHC8QFLWZqpoB0uoaAhHQKfZjwvxpcp1fZQoaAZHQHC2oc3l0YFoB0ufaAhHQKfZjr56+nJ1fZQoaAZHQHJdykO7QLNoB0uraAhHQKfaDGgBcRl1fZQoaAZHQHLBhRZU1htoB0u9aAhHQKfaDe0G/vh1fZQoaAZHQHLp/yGzru9oB0vbaAhHQKfaEed07r91fZQoaAZHQHHsf4IrvstoB0vOaAhHQKfaMwM6RyR1fZQoaAZHQHFfnBP9DQZoB0ugaAhHQKfaRItlI3B1fZQoaAZHQHADVhoduHhoB0uwaAhHQKfalgogFHJ1fZQoaAZHQG9bJZntfHBoB0uraAhHQKfaqs3AEdN1fZQoaAZHQHC+obXHzYpoB0vPaAhHQKfasSHuZ1F1fZQoaAZHQHLSIrz5GjNoB0uvaAhHQKfatb9If8x1fZQoaAZHQHLedVrAP/doB0vIaAhHQKfavv5xiod1fZQoaAZHQHMjfm9xp+NoB0vYaAhHQKfayS6DoQp1fZQoaAZHQHIgFHWjGkxoB0vBaAhHQKfa/HJcPe51fZQoaAZHQHOcSWAwwkBoB0vFaAhHQKfbFV5rxiJ1fZQoaAZHQHGlWyTpxFRoB0vDaAhHQKfbSkC3gDR1fZQoaAZHQHCOhmwqy4ZoB0u7aAhHQKfbV+1Bt1p1fZQoaAZHQHFSHktEofFoB0u6aAhHQKfbVX+VC5V1fZQoaAZHQHCsf642CNFoB0uyaAhHQKfbwyHEdeZ1fZQoaAZHQHBKzsUqQRxoB0ukaAhHQKfb0nl4keJ1fZQoaAZHQHIwnOW0JF9oB0vBaAhHQKfb5U8V58l1fZQoaAZHQHHTNMwlByFoB0vNaAhHQKfcBKHwgDB1fZQoaAZHQHEDuRLbpNdoB0vDaAhHQKfcEJRfnfV1fZQoaAZHQG59Hyd4FA5oB0u8aAhHQKfcdq6e5Fx1fZQoaAZHQHORDpHI6sBoB0u6aAhHQKfcfQtz0Yl1fZQoaAZHQHIdePq9oOBoB0vGaAhHQKfcfLkCFK11fZQoaAZHQHGPxxLkCFNoB0vTaAhHQKfcuNlyzX11fZQoaAZHQHGGez6ab4JoB0vRaAhHQKfcwSZjQRh1fZQoaAZHQHNr/luFYdRoB0u5aAhHQKfcy/FBIFx1fZQoaAZHQHKauIyj59FoB0vbaAhHQKfc4whW5pd1fZQoaAZHQG8rwYUFjd5oB0vDaAhHQKfc+86mwaB1fZQoaAZHQHLQqOT7l7toB0u+aAhHQKfdMjM3ZPF1fZQoaAZHQHDu5IDoyKxoB0u+aAhHQKfdL4WUKRd1fZQoaAZHQHNOw62fChxoB0vJaAhHQKfdPsqJ/G51fZQoaAZHQHAoCliz9jxoB0u4aAhHQKfdrIS13MZ1fZQoaAZHQHCtxp1zQu5oB0vKaAhHQKfduynk1dh1fZQoaAZHQHFwDJuEVWVoB0uwaAhHQKfdx0lqrR11fZQoaAZHQHHcnMdLg4xoB0vKaAhHQKfd+fdRBNV1fZQoaAZHQHJSjgl4TsZoB0viaAhHQKfeBDCP6sR1fZQoaAZHQHNknIuGsWBoB0uwaAhHQKfeKi9qUNd1fZQoaAZHQG/o5bQkX1toB0u3aAhHQKfeO/7BO591fZQoaAZHQHGomyTpxFRoB0ueaAhHQKfeSRlHz6J1fZQoaAZHQHMDnR9gF5hoB0vBaAhHQKfeTjvuw5h1fZQoaAZHQHH7OZ9d/rloB0uwaAhHQKfebVvuPWB1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 660,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5196446afa3e0a6979333ab24f03900cad5b8e66830531491f2d4f11948d1b49
|
3 |
+
size 87929
|
ppo-LunarLander-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df692d2ea2e84403a28cc236114f9ff252b095c7d6fb73432caecadfe5f8dfaa
|
3 |
+
size 43329
|
ppo-LunarLander-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (166 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 290.31701189999995, "std_reward": 15.842252464927515, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-21T01:09:52.405729"}
|