Upload handler.py
Browse files- handler.py +52 -0
handler.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any, Tuple
|
2 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
3 |
+
import torch
|
4 |
+
from subprocess import run
|
5 |
+
|
6 |
+
# set device
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
|
9 |
+
|
10 |
+
class EndpointHandler():
|
11 |
+
def __init__(self, path=""):
|
12 |
+
# self.pipeline = pipeline("text-classification", model=path)
|
13 |
+
# self.holidays = holidays.US()
|
14 |
+
self.query_model = AutoModelForMaskedLM.from_pretrained(path).to(device)
|
15 |
+
self.query_tokenizer = AutoTokenizer.from_pretrained(path)
|
16 |
+
|
17 |
+
|
18 |
+
def __call__(self, data: Dict[str, Any]) -> Tuple[List[List[int]], List[List[float]]]:
|
19 |
+
"""
|
20 |
+
data args:
|
21 |
+
inputs (:obj: `str`)
|
22 |
+
date (:obj: `str`)
|
23 |
+
Return:
|
24 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
25 |
+
"""
|
26 |
+
# get inputs
|
27 |
+
texts = data.pop("inputs", data)
|
28 |
+
|
29 |
+
tokens = self.query_tokenizer(
|
30 |
+
texts, truncation=True, padding=True, return_tensors="pt"
|
31 |
+
)
|
32 |
+
|
33 |
+
tokens = self.query_tokenizer(
|
34 |
+
texts, truncation=True, padding=True, return_tensors="pt"
|
35 |
+
)
|
36 |
+
if torch.cuda.is_available():
|
37 |
+
tokens = tokens.to("cuda")
|
38 |
+
|
39 |
+
output = self.query_model(**tokens)
|
40 |
+
logits, attention_mask = output.logits, tokens.attention_mask
|
41 |
+
relu_log = torch.log(1 + torch.relu(logits))
|
42 |
+
weighted_log = relu_log * attention_mask.unsqueeze(-1)
|
43 |
+
tvecs, _ = torch.max(weighted_log, dim=1)
|
44 |
+
|
45 |
+
# extract the vectors that are non-zero and their indices
|
46 |
+
indices = []
|
47 |
+
vecs = []
|
48 |
+
for batch in tvecs:
|
49 |
+
indices.append(batch.nonzero(as_tuple=True)[0].tolist())
|
50 |
+
vecs.append(batch[indices[-1]].tolist())
|
51 |
+
|
52 |
+
return [indices, vecs]
|