--- license: apache-2.0 base_model: bert-base-multilingual-cased datasets: - HiTZ/multilingual-abstrct language: - en - es - fr - it metrics: - f1 pipeline_tag: token-classification library_name: transformers widget: - text: In the comparison of responders versus patients with both SD (6m) and PD, responders indicated better physical well-being (P=.004) and mood (P=.02) at month 3. - text: En la comparación de los que respondieron frente a los pacientes tanto con SD (6m) como con EP, los que respondieron indicaron un mejor bienestar físico (P=.004) y estado de ánimo (P=.02) en el mes 3. - text: Dans la comparaison entre les répondeurs et les patients atteints de SD (6m) et de PD, les répondeurs ont indiqué un meilleur bien-être physique (P=.004) et une meilleure humeur (P=.02) au mois 3. - text: Nel confronto tra i responder e i pazienti con SD (6m) e PD, i responder hanno indicato un migliore benessere fisico (P=.004) e umore (P=.02) al terzo mese. ---


# mBERT for multilingual Argument Detection in the Medical Domain This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) for the argument component detection task on AbstRCT data in English, Spanish, French and Italian ([https://huggingface.co/datasets/HiTZ/multilingual-abstrct](https://huggingface.co/datasets/HiTZ/multilingual-abstrct)). ## Performance F1-macro scores (at sequence level) and their averages per test set from the argument component detection results of monolingual, monolingual automatically post-processed, multilingual, multilingual automatically post-processed, and crosslingual experiments. ### Label Dictionary ```` "id2label": { "0": "B-Claim", "1": "B-Premise", "2": "I-Claim", "3": "I-Premise", "4": "O" } ```` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.2 **Contact**: [Anar Yeginbergen](https://ixa.ehu.eus/node/13807?language=en) and [Rodrigo Agerri](https://ragerri.github.io/) HiTZ Center - Ixa, University of the Basque Country UPV/EHU