tiedeman commited on
Commit
7ee818f
·
1 Parent(s): 1b7c6e2

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.spm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ language:
4
+ - blt
5
+ - de
6
+ - en
7
+ - es
8
+ - fr
9
+ - lo
10
+ - pt
11
+ - shn
12
+ - th
13
+ - tts
14
+ - tyj
15
+ - za
16
+
17
+ tags:
18
+ - translation
19
+ - opus-mt-tc-bible
20
+
21
+ license: apache-2.0
22
+ model-index:
23
+ - name: opus-mt-tc-bible-big-tai-deu_eng_fra_por_spa
24
+ results:
25
+ - task:
26
+ name: Translation multi-multi
27
+ type: translation
28
+ args: multi-multi
29
+ dataset:
30
+ name: tatoeba-test-v2020-07-28-v2023-09-26
31
+ type: tatoeba_mt
32
+ args: multi-multi
33
+ metrics:
34
+ - name: BLEU
35
+ type: bleu
36
+ value: 41.9
37
+ - name: chr-F
38
+ type: chrf
39
+ value: 0.59037
40
+ ---
41
+ # opus-mt-tc-bible-big-tai-deu_eng_fra_por_spa
42
+
43
+ ## Table of Contents
44
+ - [Model Details](#model-details)
45
+ - [Uses](#uses)
46
+ - [Risks, Limitations and Biases](#risks-limitations-and-biases)
47
+ - [How to Get Started With the Model](#how-to-get-started-with-the-model)
48
+ - [Training](#training)
49
+ - [Evaluation](#evaluation)
50
+ - [Citation Information](#citation-information)
51
+ - [Acknowledgements](#acknowledgements)
52
+
53
+ ## Model Details
54
+
55
+ Neural machine translation model for translating from Tai languages (tai) to unknown (deu+eng+fra+por+spa).
56
+
57
+ This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
58
+ **Model Description:**
59
+ - **Developed by:** Language Technology Research Group at the University of Helsinki
60
+ - **Model Type:** Translation (transformer-big)
61
+ - **Release**: 2024-05-30
62
+ - **License:** Apache-2.0
63
+ - **Language(s):**
64
+ - Source Language(s): blt lao shn tha tts tyj zha
65
+ - Target Language(s): deu eng fra por spa
66
+ - Valid Target Language Labels: >>deu<< >>eng<< >>fra<< >>por<< >>spa<< >>xxx<<
67
+ - **Original Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/tai-deu+eng+fra+por+spa/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip)
68
+ - **Resources for more information:**
69
+ - [OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/tai-deu%2Beng%2Bfra%2Bpor%2Bspa/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-05-30)
70
+ - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
71
+ - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian)
72
+ - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/)
73
+ - [HPLT bilingual data v1 (as part of the Tatoeba Translation Challenge dataset)](https://hplt-project.org/datasets/v1)
74
+ - [A massively parallel Bible corpus](https://aclanthology.org/L14-1215/)
75
+
76
+ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>deu<<`
77
+
78
+ ## Uses
79
+
80
+ This model can be used for translation and text-to-text generation.
81
+
82
+ ## Risks, Limitations and Biases
83
+
84
+ **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.**
85
+
86
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
87
+
88
+ ## How to Get Started With the Model
89
+
90
+ A short example code:
91
+
92
+ ```python
93
+ from transformers import MarianMTModel, MarianTokenizer
94
+
95
+ src_text = [
96
+ ">>deu<< Replace this with text in an accepted source language.",
97
+ ">>spa<< This is the second sentence."
98
+ ]
99
+
100
+ model_name = "pytorch-models/opus-mt-tc-bible-big-tai-deu_eng_fra_por_spa"
101
+ tokenizer = MarianTokenizer.from_pretrained(model_name)
102
+ model = MarianMTModel.from_pretrained(model_name)
103
+ translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
104
+
105
+ for t in translated:
106
+ print( tokenizer.decode(t, skip_special_tokens=True) )
107
+ ```
108
+
109
+ You can also use OPUS-MT models with the transformers pipelines, for example:
110
+
111
+ ```python
112
+ from transformers import pipeline
113
+ pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-bible-big-tai-deu_eng_fra_por_spa")
114
+ print(pipe(">>deu<< Replace this with text in an accepted source language."))
115
+ ```
116
+
117
+ ## Training
118
+
119
+ - **Data**: opusTCv20230926max50+bt+jhubc ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
120
+ - **Pre-processing**: SentencePiece (spm32k,spm32k)
121
+ - **Model Type:** transformer-big
122
+ - **Original MarianNMT Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/tai-deu+eng+fra+por+spa/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip)
123
+ - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
124
+
125
+ ## Evaluation
126
+
127
+ * [Model scores at the OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/tai-deu%2Beng%2Bfra%2Bpor%2Bspa/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-05-30)
128
+ * test set translations: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tai-deu+eng+fra+por+spa/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.test.txt)
129
+ * test set scores: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tai-deu+eng+fra+por+spa/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.eval.txt)
130
+ * benchmark results: [benchmark_results.txt](benchmark_results.txt)
131
+ * benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
132
+
133
+ | langpair | testset | chr-F | BLEU | #sent | #words |
134
+ |----------|---------|-------|-------|-------|--------|
135
+ | multi-multi | tatoeba-test-v2020-07-28-v2023-09-26 | 0.59037 | 41.9 | 1534 | 10323 |
136
+
137
+ ## Citation Information
138
+
139
+ * Publications: [Democratizing neural machine translation with OPUS-MT](https://doi.org/10.1007/s10579-023-09704-w) and [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
140
+
141
+ ```bibtex
142
+ @article{tiedemann2023democratizing,
143
+ title={Democratizing neural machine translation with {OPUS-MT}},
144
+ author={Tiedemann, J{\"o}rg and Aulamo, Mikko and Bakshandaeva, Daria and Boggia, Michele and Gr{\"o}nroos, Stig-Arne and Nieminen, Tommi and Raganato, Alessandro and Scherrer, Yves and Vazquez, Raul and Virpioja, Sami},
145
+ journal={Language Resources and Evaluation},
146
+ number={58},
147
+ pages={713--755},
148
+ year={2023},
149
+ publisher={Springer Nature},
150
+ issn={1574-0218},
151
+ doi={10.1007/s10579-023-09704-w}
152
+ }
153
+
154
+ @inproceedings{tiedemann-thottingal-2020-opus,
155
+ title = "{OPUS}-{MT} {--} Building open translation services for the World",
156
+ author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
157
+ booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
158
+ month = nov,
159
+ year = "2020",
160
+ address = "Lisboa, Portugal",
161
+ publisher = "European Association for Machine Translation",
162
+ url = "https://aclanthology.org/2020.eamt-1.61",
163
+ pages = "479--480",
164
+ }
165
+
166
+ @inproceedings{tiedemann-2020-tatoeba,
167
+ title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
168
+ author = {Tiedemann, J{\"o}rg},
169
+ booktitle = "Proceedings of the Fifth Conference on Machine Translation",
170
+ month = nov,
171
+ year = "2020",
172
+ address = "Online",
173
+ publisher = "Association for Computational Linguistics",
174
+ url = "https://aclanthology.org/2020.wmt-1.139",
175
+ pages = "1174--1182",
176
+ }
177
+ ```
178
+
179
+ ## Acknowledgements
180
+
181
+ The work is supported by the [HPLT project](https://hplt-project.org/), funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland, and the [EuroHPC supercomputer LUMI](https://www.lumi-supercomputer.eu/).
182
+
183
+ ## Model conversion info
184
+
185
+ * transformers version: 4.45.1
186
+ * OPUS-MT git hash: 0882077
187
+ * port time: Tue Oct 8 22:55:03 EEST 2024
188
+ * port machine: LM0-400-22516.local
benchmark_results.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ multi-multi tatoeba-test-v2020-07-28-v2023-09-26 0.59037 41.9 1534 10323
benchmark_translations.zip ADDED
File without changes
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "pytorch-models/opus-mt-tc-bible-big-tai-deu_eng_fra_por_spa",
3
+ "activation_dropout": 0.0,
4
+ "activation_function": "relu",
5
+ "architectures": [
6
+ "MarianMTModel"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "bos_token_id": 0,
10
+ "classifier_dropout": 0.0,
11
+ "d_model": 1024,
12
+ "decoder_attention_heads": 16,
13
+ "decoder_ffn_dim": 4096,
14
+ "decoder_layerdrop": 0.0,
15
+ "decoder_layers": 6,
16
+ "decoder_start_token_id": 58837,
17
+ "decoder_vocab_size": 58838,
18
+ "dropout": 0.1,
19
+ "encoder_attention_heads": 16,
20
+ "encoder_ffn_dim": 4096,
21
+ "encoder_layerdrop": 0.0,
22
+ "encoder_layers": 6,
23
+ "eos_token_id": 1080,
24
+ "forced_eos_token_id": null,
25
+ "init_std": 0.02,
26
+ "is_encoder_decoder": true,
27
+ "max_length": null,
28
+ "max_position_embeddings": 1024,
29
+ "model_type": "marian",
30
+ "normalize_embedding": false,
31
+ "num_beams": null,
32
+ "num_hidden_layers": 6,
33
+ "pad_token_id": 58837,
34
+ "scale_embedding": true,
35
+ "share_encoder_decoder_embeddings": true,
36
+ "static_position_embeddings": true,
37
+ "torch_dtype": "float32",
38
+ "transformers_version": "4.45.1",
39
+ "use_cache": true,
40
+ "vocab_size": 58838
41
+ }
generation_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bad_words_ids": [
4
+ [
5
+ 58837
6
+ ]
7
+ ],
8
+ "bos_token_id": 0,
9
+ "decoder_start_token_id": 58837,
10
+ "eos_token_id": 1080,
11
+ "forced_eos_token_id": 1080,
12
+ "max_length": 512,
13
+ "num_beams": 4,
14
+ "pad_token_id": 58837,
15
+ "transformers_version": "4.45.1"
16
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca481b0d700a4068cb731b66b1e94845dd588335eecf19898e2ea692d61bec43
3
+ size 946694920
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e3eff1b9b67c8ad6c41b7949e8295e928f0b45f92638fe031f7a43d747adb79
3
+ size 946746181
source.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cc8f5c71d695513dbf8e15bde724f8246b029db8e6ff2b8a78f56c981d12837
3
+ size 1107675
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
target.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bb74655a70473ad625d46400ef172bc6e581398f46f86fa783bf4c14ca8ce13
3
+ size 794696
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"source_lang": "tai", "target_lang": "deu+eng+fra+por+spa", "unk_token": "<unk>", "eos_token": "</s>", "pad_token": "<pad>", "model_max_length": 512, "sp_model_kwargs": {}, "separate_vocabs": false, "special_tokens_map_file": null, "name_or_path": "marian-models/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30/tai-deu+eng+fra+por+spa", "tokenizer_class": "MarianTokenizer"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff