tiedeman commited on
Commit
4e5712c
·
1 Parent(s): 340c15b

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.spm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ language:
4
+ - alt
5
+ - az
6
+ - ba
7
+ - crh
8
+ - cv
9
+ - de
10
+ - en
11
+ - es
12
+ - fr
13
+ - gag
14
+ - kaa
15
+ - kjh
16
+ - kk
17
+ - krc
18
+ - kum
19
+ - ky
20
+ - nog
21
+ - ota
22
+ - otk
23
+ - pt
24
+ - sah
25
+ - tk
26
+ - tr
27
+ - tt
28
+ - tyv
29
+ - ug
30
+ - uz
31
+
32
+ tags:
33
+ - translation
34
+ - opus-mt-tc-bible
35
+
36
+ license: apache-2.0
37
+ model-index:
38
+ - name: opus-mt-tc-bible-big-deu_eng_fra_por_spa-trk
39
+ results:
40
+ - task:
41
+ name: Translation multi-multi
42
+ type: translation
43
+ args: multi-multi
44
+ dataset:
45
+ name: tatoeba-test-v2020-07-28-v2023-09-26
46
+ type: tatoeba_mt
47
+ args: multi-multi
48
+ metrics:
49
+ - name: BLEU
50
+ type: bleu
51
+ value: 30.9
52
+ - name: chr-F
53
+ type: chrf
54
+ value: 0.58853
55
+ ---
56
+ # opus-mt-tc-bible-big-deu_eng_fra_por_spa-trk
57
+
58
+ ## Table of Contents
59
+ - [Model Details](#model-details)
60
+ - [Uses](#uses)
61
+ - [Risks, Limitations and Biases](#risks-limitations-and-biases)
62
+ - [How to Get Started With the Model](#how-to-get-started-with-the-model)
63
+ - [Training](#training)
64
+ - [Evaluation](#evaluation)
65
+ - [Citation Information](#citation-information)
66
+ - [Acknowledgements](#acknowledgements)
67
+
68
+ ## Model Details
69
+
70
+ Neural machine translation model for translating from unknown (deu+eng+fra+por+spa) to Turkic languages (trk).
71
+
72
+ This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
73
+ **Model Description:**
74
+ - **Developed by:** Language Technology Research Group at the University of Helsinki
75
+ - **Model Type:** Translation (transformer-big)
76
+ - **Release**: 2024-05-30
77
+ - **License:** Apache-2.0
78
+ - **Language(s):**
79
+ - Source Language(s): deu eng fra por spa
80
+ - Target Language(s): alt aze bak chv crh gag kaa kaz kir kjh krc kum nog ota otk sah tat tuk tur tyv uig uzb
81
+ - Valid Target Language Labels: >>aib<< >>alt<< >>atv<< >>aze<< >>aze_Cyrl<< >>aze_Latn<< >>bak<< >>bgx<< >>chg<< >>chv<< >>cjs<< >>clw<< >>crh<< >>dlg<< >>gag<< >>ili<< >>jct<< >>kaa<< >>kaz<< >>kaz_Cyrl<< >>kdr<< >>kim<< >>kir<< >>kir_Cyrl<< >>kjh<< >>klj<< >>kmz<< >>krc<< >>kum<< >>nog<< >>ota<< >>ota_Arab<< >>ota_Latn<< >>ota_Rohg<< >>ota_Syrc<< >>ota_Thaa<< >>ota_Yezi<< >>otk<< >>otk_Orkh<< >>oui<< >>qwm<< >>qxq<< >>sah<< >>slq<< >>slr<< >>sty<< >>tat<< >>tuk<< >>tuk_Latn<< >>tur<< >>tyv<< >>uig<< >>uig_Arab<< >>uig_Cyrl<< >>uig_Latn<< >>uum<< >>uzb<< >>uzb_Cyrl<< >>uzb_Latn<< >>xbo<< >>xpc<< >>ybe<<
82
+ - **Original Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-trk/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip)
83
+ - **Resources for more information:**
84
+ - [OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/deu%2Beng%2Bfra%2Bpor%2Bspa-trk/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-05-30)
85
+ - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
86
+ - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian)
87
+ - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/)
88
+ - [HPLT bilingual data v1 (as part of the Tatoeba Translation Challenge dataset)](https://hplt-project.org/datasets/v1)
89
+ - [A massively parallel Bible corpus](https://aclanthology.org/L14-1215/)
90
+
91
+ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>alt<<`
92
+
93
+ ## Uses
94
+
95
+ This model can be used for translation and text-to-text generation.
96
+
97
+ ## Risks, Limitations and Biases
98
+
99
+ **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.**
100
+
101
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
102
+
103
+ ## How to Get Started With the Model
104
+
105
+ A short example code:
106
+
107
+ ```python
108
+ from transformers import MarianMTModel, MarianTokenizer
109
+
110
+ src_text = [
111
+ ">>alt<< Replace this with text in an accepted source language.",
112
+ ">>uzb<< This is the second sentence."
113
+ ]
114
+
115
+ model_name = "pytorch-models/opus-mt-tc-bible-big-deu_eng_fra_por_spa-trk"
116
+ tokenizer = MarianTokenizer.from_pretrained(model_name)
117
+ model = MarianMTModel.from_pretrained(model_name)
118
+ translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
119
+
120
+ for t in translated:
121
+ print( tokenizer.decode(t, skip_special_tokens=True) )
122
+ ```
123
+
124
+ You can also use OPUS-MT models with the transformers pipelines, for example:
125
+
126
+ ```python
127
+ from transformers import pipeline
128
+ pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-trk")
129
+ print(pipe(">>alt<< Replace this with text in an accepted source language."))
130
+ ```
131
+
132
+ ## Training
133
+
134
+ - **Data**: opusTCv20230926max50+bt+jhubc ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
135
+ - **Pre-processing**: SentencePiece (spm32k,spm32k)
136
+ - **Model Type:** transformer-big
137
+ - **Original MarianNMT Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-trk/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30.zip)
138
+ - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
139
+
140
+ ## Evaluation
141
+
142
+ * [Model scores at the OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/deu%2Beng%2Bfra%2Bpor%2Bspa-trk/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-05-30)
143
+ * test set translations: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-trk/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.test.txt)
144
+ * test set scores: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu+eng+fra+por+spa-trk/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-29.eval.txt)
145
+ * benchmark results: [benchmark_results.txt](benchmark_results.txt)
146
+ * benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
147
+
148
+ | langpair | testset | chr-F | BLEU | #sent | #words |
149
+ |----------|---------|-------|-------|-------|--------|
150
+ | multi-multi | tatoeba-test-v2020-07-28-v2023-09-26 | 0.58853 | 30.9 | 10000 | 58349 |
151
+
152
+ ## Citation Information
153
+
154
+ * Publications: [Democratizing neural machine translation with OPUS-MT](https://doi.org/10.1007/s10579-023-09704-w) and [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
155
+
156
+ ```bibtex
157
+ @article{tiedemann2023democratizing,
158
+ title={Democratizing neural machine translation with {OPUS-MT}},
159
+ author={Tiedemann, J{\"o}rg and Aulamo, Mikko and Bakshandaeva, Daria and Boggia, Michele and Gr{\"o}nroos, Stig-Arne and Nieminen, Tommi and Raganato, Alessandro and Scherrer, Yves and Vazquez, Raul and Virpioja, Sami},
160
+ journal={Language Resources and Evaluation},
161
+ number={58},
162
+ pages={713--755},
163
+ year={2023},
164
+ publisher={Springer Nature},
165
+ issn={1574-0218},
166
+ doi={10.1007/s10579-023-09704-w}
167
+ }
168
+
169
+ @inproceedings{tiedemann-thottingal-2020-opus,
170
+ title = "{OPUS}-{MT} {--} Building open translation services for the World",
171
+ author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
172
+ booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
173
+ month = nov,
174
+ year = "2020",
175
+ address = "Lisboa, Portugal",
176
+ publisher = "European Association for Machine Translation",
177
+ url = "https://aclanthology.org/2020.eamt-1.61",
178
+ pages = "479--480",
179
+ }
180
+
181
+ @inproceedings{tiedemann-2020-tatoeba,
182
+ title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
183
+ author = {Tiedemann, J{\"o}rg},
184
+ booktitle = "Proceedings of the Fifth Conference on Machine Translation",
185
+ month = nov,
186
+ year = "2020",
187
+ address = "Online",
188
+ publisher = "Association for Computational Linguistics",
189
+ url = "https://aclanthology.org/2020.wmt-1.139",
190
+ pages = "1174--1182",
191
+ }
192
+ ```
193
+
194
+ ## Acknowledgements
195
+
196
+ The work is supported by the [HPLT project](https://hplt-project.org/), funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland, and the [EuroHPC supercomputer LUMI](https://www.lumi-supercomputer.eu/).
197
+
198
+ ## Model conversion info
199
+
200
+ * transformers version: 4.45.1
201
+ * OPUS-MT git hash: 0882077
202
+ * port time: Tue Oct 8 10:38:44 EEST 2024
203
+ * port machine: LM0-400-22516.local
benchmark_results.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ multi-multi tatoeba-test-v2020-07-28-v2023-09-26 0.58853 30.9 10000 58349
benchmark_translations.zip ADDED
File without changes
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "pytorch-models/opus-mt-tc-bible-big-deu_eng_fra_por_spa-trk",
3
+ "activation_dropout": 0.0,
4
+ "activation_function": "relu",
5
+ "architectures": [
6
+ "MarianMTModel"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "bos_token_id": 0,
10
+ "classifier_dropout": 0.0,
11
+ "d_model": 1024,
12
+ "decoder_attention_heads": 16,
13
+ "decoder_ffn_dim": 4096,
14
+ "decoder_layerdrop": 0.0,
15
+ "decoder_layers": 6,
16
+ "decoder_start_token_id": 60982,
17
+ "decoder_vocab_size": 60983,
18
+ "dropout": 0.1,
19
+ "encoder_attention_heads": 16,
20
+ "encoder_ffn_dim": 4096,
21
+ "encoder_layerdrop": 0.0,
22
+ "encoder_layers": 6,
23
+ "eos_token_id": 418,
24
+ "forced_eos_token_id": null,
25
+ "init_std": 0.02,
26
+ "is_encoder_decoder": true,
27
+ "max_length": null,
28
+ "max_position_embeddings": 1024,
29
+ "model_type": "marian",
30
+ "normalize_embedding": false,
31
+ "num_beams": null,
32
+ "num_hidden_layers": 6,
33
+ "pad_token_id": 60982,
34
+ "scale_embedding": true,
35
+ "share_encoder_decoder_embeddings": true,
36
+ "static_position_embeddings": true,
37
+ "torch_dtype": "float32",
38
+ "transformers_version": "4.45.1",
39
+ "use_cache": true,
40
+ "vocab_size": 60983
41
+ }
generation_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bad_words_ids": [
4
+ [
5
+ 60982
6
+ ]
7
+ ],
8
+ "bos_token_id": 0,
9
+ "decoder_start_token_id": 60982,
10
+ "eos_token_id": 418,
11
+ "forced_eos_token_id": 418,
12
+ "max_length": 512,
13
+ "num_beams": 4,
14
+ "pad_token_id": 60982,
15
+ "transformers_version": "4.45.1"
16
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8eafc7df534c6b5eef23e1a7008055b2eea11bd75f89f3236470bc9ebe0f9579
3
+ size 955489420
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da1fedd743baaf22a8b74d7425d81a249a83fc6b8f842dd05c5750025cbcb40e
3
+ size 955540677
source.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:026a86cfdb5b4a18bdb1cf88b9c7234ded90415cfeed188e07ab998a03780f6b
3
+ size 801595
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
target.spm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:751d5f7dd2204a41cc260d9740b05d80a6ab8540070b7678ed5e132b08b2e5dd
3
+ size 862641
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"source_lang": "deu+eng+fra+por+spa", "target_lang": "trk", "unk_token": "<unk>", "eos_token": "</s>", "pad_token": "<pad>", "model_max_length": 512, "sp_model_kwargs": {}, "separate_vocabs": false, "special_tokens_map_file": null, "name_or_path": "marian-models/opusTCv20230926max50+bt+jhubc_transformer-big_2024-05-30/deu+eng+fra+por+spa-trk", "tokenizer_class": "MarianTokenizer"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff