nazneen commited on
Commit
218c41a
·
1 Parent(s): 6889649

model documentation

Browse files
Files changed (1) hide show
  1. README.md +193 -0
README.md ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ License: MIT
3
+ language:
4
+ - multilingual
5
+
6
+ tags:
7
+ - wav2vec2
8
+ - automatic-speech-recognition
9
+ ---
10
+
11
+ # Model Card for vakyansh-wav2vec2-indian-english-enm-700
12
+
13
+ # Model Details
14
+
15
+ ## Model Description
16
+
17
+ The model creators note in the [associated paper](https://arxiv.org/pdf/2107.07402.pdf):
18
+
19
+ > The model is a self supervised learning based audio pre-trained model which learns cross lingual speech representations from raw audio across 23 Indic languages. It is built on top of wav2vec 2.0 which is solved by training a contrastive task over masked latent speech representations and jointly learns the quantization of latents shared across all languages.
20
+
21
+
22
+ - **Developed by:** Harveen Singh Chadha
23
+ - **Shared by [Optional]:** Harveen Singh Chadha
24
+
25
+ - **Model type:** Automatic Speech Recognition
26
+ - **Language(s) (NLP):** More information needed
27
+ - **License:** MIT
28
+ - **Parent Model:** [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base)
29
+ - **Resources for more information:**
30
+ - [GitHub Repo](https://github.com/Open-Speech-EkStep/vakyansh-wav2vec2-experimentation)
31
+ - [Associated Paper](https://arxiv.org/abs/2107.07402)
32
+
33
+
34
+
35
+
36
+ # Uses
37
+
38
+
39
+ ## Direct Use
40
+ This model can be used for the task of automatic speech recognition.
41
+
42
+ ## Downstream Use [Optional]
43
+
44
+ More information needed.
45
+
46
+ ## Out-of-Scope Use
47
+
48
+ The model should not be used to intentionally create hostile or alienating environments for people.
49
+
50
+ # Bias, Risks, and Limitations
51
+
52
+
53
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
54
+
55
+
56
+
57
+ ## Recommendations
58
+
59
+
60
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
61
+
62
+ # Training Details
63
+
64
+ ## Training Data
65
+
66
+ The model creators note in the [associated paper](https://arxiv.org/pdf/2107.07402.pdf):
67
+ > All our data has been processed through the open sourced framework called Vakyansh . The basic steps of the process are -
68
+ 1.) Download and convert audio to wav format with sample rate 16000, number of channels 1 and bit rate per sample of 16.
69
+ 2.) We split an audio into voiced chunks using voice activity detection . We make sure that all the voiced chunks lie between 1 and 30 seconds.
70
+ 3.) To detect and reject noisy samples we use a signal to noise ratio (SNR) approach described by [Kim and Stern, 2008]. We consider any audio sample below a SNR value of 25 as noise and do not include them in training data.
71
+ 4.) We perform speaker and gender identification on our audio data. A high level representation of voice is learnt using a voice encoder based on [Wan et al., 2020]. For each audio sample the voice encoder creates a 256 dimensional encoding that summarizes characteristics of the spoken voice. For gender identification we train a support vector machine algorithm on the embedding with manually labelled data.
72
+
73
+ > Our goal for speaker identification was to get a sense of the number of speakers in a particular audio source. To estimate we use a hierarchical clustering approach to cluster similar embeddings in the sense of cosine similarity. The number of speakers are thus the number of clusters.
74
+
75
+
76
+ ## Training Procedure
77
+
78
+
79
+ ### Preprocessing
80
+
81
+ More information needed
82
+
83
+
84
+
85
+ ### Speeds, Sizes, Times
86
+
87
+ More information needed
88
+
89
+
90
+
91
+ # Evaluation
92
+
93
+
94
+ ## Testing Data, Factors & Metrics
95
+
96
+ ### Testing Data
97
+
98
+ More information needed
99
+
100
+ ### Factors
101
+ More information needed
102
+
103
+ ### Metrics
104
+
105
+ More information needed
106
+
107
+
108
+ ## Results
109
+
110
+ More information needed
111
+
112
+
113
+ # Model Examination
114
+
115
+ More information needed
116
+
117
+ # Environmental Impact
118
+
119
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
120
+
121
+ - **Hardware Type:** 8 Tesla V100 GPUs
122
+ - **Hours used:** 10,000
123
+ - **Cloud Provider:** More information needed
124
+ - **Compute Region:** More information needed
125
+ - **Carbon Emitted:** More information needed
126
+
127
+ # Technical Specifications [optional]
128
+
129
+ ## Model Architecture and Objective
130
+
131
+ More information needed
132
+
133
+ ## Compute Infrastructure
134
+
135
+ More information needed
136
+
137
+ ### Hardware
138
+
139
+
140
+ More information needed
141
+
142
+ ### Software
143
+
144
+ More information needed.
145
+
146
+ # Citation
147
+
148
+
149
+ **BibTeX:**
150
+
151
+ More information needed
152
+ ```bibtex
153
+ @misc{chadha2022vakyansh,
154
+ title={Vakyansh: ASR Toolkit for Low Resource Indic languages},
155
+ author={Harveen Singh Chadha and Anirudh Gupta and Priyanshi Shah and Neeraj Chhimwal and Ankur Dhuriya and Rishabh Gaur and Vivek Raghavan},
156
+ year={2022},
157
+ eprint={2203.16512},
158
+ archivePrefix={arXiv},
159
+ primaryClass={cs.CL}
160
+ }
161
+ ```
162
+
163
+
164
+ # Glossary [optional]
165
+
166
+ More information needed
167
+
168
+ # More Information [optional]
169
+ More information needed
170
+
171
+ # Model Card Authors [optional]
172
+
173
+ Harveen Singh Chadha in collaboration with Ezi Ozoani and the Hugging Face team
174
+
175
+ # Model Card Contact
176
+
177
+ More information needed
178
+
179
+ # How to Get Started with the Model
180
+
181
+ Use the code below to get started with the model.
182
+
183
+ <details>
184
+ <summary> Click to expand </summary>
185
+
186
+ ```python
187
+ from transformers import AutoProcessor, AutoModelForCTC
188
+
189
+ processor = AutoProcessor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-indian-english-enm-700")
190
+
191
+ model = AutoModelForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-indian-english-enm-700")
192
+ ```
193
+ </details>