SWAPON / app.py
Harsh-7300's picture
Upload 63 files
719f10f verified
import os
import cv2 as cv
import numpy as np
import json
import random
from PIL import Image, ImageDraw, ImageFont
import asyncio
import socket
import requests
import base64
import gradio as gr
# from IPython import embed
machine_number = 0
model = os.path.join(os.path.dirname(__file__), "models/eva/Eva_0.png")
MODEL_MAP = {
"AI Model Rouyan_0": 'models/rouyan_new/Rouyan_0.png',
"AI Model Rouyan_1": 'models/rouyan_new/Rouyan_1.png',
"AI Model Rouyan_2": 'models/rouyan_new/Rouyan_2.png',
"AI Model Eva_0": 'models/eva/Eva_0.png',
"AI Model Eva_1": 'models/eva/Eva_1.png',
"AI Model Simon_0": 'models/simon_online/Simon_0.png',
"AI Model Simon_1": 'models/simon_online/Simon_1.png',
"AI Model Xuanxuan_0": 'models/xiaoxuan_online/Xuanxuan_0.png',
"AI Model Xuanxuan_1": 'models/xiaoxuan_online/Xuanxuan_1.png',
"AI Model Xuanxuan_2": 'models/xiaoxuan_online/Xuanxuan_2.png',
"AI Model Yaqi_0": 'models/yaqi/Yaqi_0.png',
"AI Model Yaqi_1": 'models/yaqi/Yaqi_1.png',
"AI Model Yaqi_2": 'models/yaqi/Yaqi_2.png',
"AI Model Yaqi_3": 'models/yaqi/Yaqi_3.png',
"AI Model Yifeng_0": 'models/yifeng_online/Yifeng_0.png',
"AI Model Yifeng_1": 'models/yifeng_online/Yifeng_1.png',
"AI Model Yifeng_2": 'models/yifeng_online/Yifeng_2.png',
"AI Model Yifeng_3": 'models/yifeng_online/Yifeng_3.png',
}
def add_waterprint(img: cv.Mat) -> cv.Mat:
h, w, _ = img.shape
img = cv.putText(img, 'Powered by OutfitAnyone', (int(0.3*w), h-20), cv.FONT_HERSHEY_PLAIN, 2, (128, 128, 128), 2, cv.LINE_AA)
return img
def get_tryon_result(model_name: str, garment1: cv.Mat, garment2: cv.Mat | None, seed: int = 1234) -> cv.Mat:
#model_name = "AI Model " + model_name.split("\\")[-1].split(".")[0] # windows
model_name = "AI Model " + model_name.split("/")[-1].split(".")[0] # linux
print(model_name)
encoded_garment1 = cv.imencode('.jpg', garment1)[1].tobytes()
encoded_garment1 = base64.b64encode(encoded_garment1).decode('utf-8')
if garment2 is not None:
encoded_garment2 = cv.imencode('.jpg', garment2)[1].tobytes()
encoded_garment2 = base64.b64encode(encoded_garment2).decode('utf-8')
else:
encoded_garment2 = ''
host_ip = socket.gethostbyname(socket.gethostname())
url = f"https://{host_ip}:192.168.115.27"
headers = {'Content-Type': 'application/json'}
seed = random.randint(0, 1222222222)
data = {
"garment1": encoded_garment1,
"garment2": encoded_garment2,
"model_name": model_name,
"seed": seed
}
response = requests.post(url, headers=headers, data=json.dumps(data))
print("response code", response.status_code)
if response.status_code == 200:
result = response.json()
result = base64.b64decode(result['images'][0])
result_np = np.frombuffer(result, np.uint8)
result_img = cv.imdecode(result_np, cv.IMREAD_UNCHANGED)
else:
print('server error!')
final_img = add_waterprint(result_img)
return final_img
'''height, width = 500, 500 # Adjust dimensions as needed
channels = 3 # 3 for RGB, 1 for grayscale
result_img = np.zeros((height, width, channels), dtype=np.uint8)
result_img[:] = (255, 0, 0) # Set the image to solid blue color
# final_img = add_waterprint(result_img)
return result_img'''
with gr.Blocks(css = ".output-image, .input-image, .image-preview {height: 400px !important} ") as demo:
# gr.Markdown("# Outfit Anyone v0.9")
gr.HTML(
"""
<div>
<h1 >Outfit Anyone: Ultra-high quality virtual try-on for Any Clothing and Any Person</h1>
</div>
""")
with gr.Row():
with gr.Column():
init_image = gr.Image(type="filepath", label="model", value=model)
example = gr.Examples(inputs=init_image,
examples_per_page=4,
examples=[os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Rouyan_0')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Rouyan_2')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Eva_0')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Simon_1')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Eva_1')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Simon_0')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Xuanxuan_0')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Xuanxuan_2')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Yaqi_1')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Yifeng_0')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Yifeng_3')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Rouyan_1')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Yifeng_2')),
os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Yaqi_0')),
])
with gr.Column():
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h3>Models are fixed and cannot be uploaded or modified; we only support users uploading their own garments.</h3>
<h4 style="margin: 0;">For a one-piece dress or coat, you only need to upload the image to the 'top garment' section and leave the 'lower garment' section empty.</h4>
</div>
</div>
""")
with gr.Row():
garment_top = gr.Image(type="numpy", label="top garment")
garment_down = gr.Image(type="numpy", label="lower garment")
run_button = gr.Button(value="Run")
with gr.Column():
gallery = gr.Image()
run_button.click(fn=get_tryon_result,
inputs=[
init_image,
garment_top,
garment_down,
],
outputs=[gallery],
show_progress=True,
concurrency_limit=2)
# Examples
gr.Markdown("## Examples")
with gr.Row():
reference_image1 = gr.Image(label="model", scale=1, value="examples/basemodel.png")
reference_image2 = gr.Image(label="garment", scale=1, value="examples/garment1.jpg")
reference_image3 = gr.Image(label="result", scale=1, value="examples/result1.png")
gr.Examples(
examples=[
["examples/basemodel.png", "examples/garment1.png", "examples/result1.png"],
["examples/basemodel.png", "examples/garment2.png", "examples/result2.png"],
["examples/basemodel.png", "examples/garment3.png", "examples/result3.png"],
],
inputs=[reference_image1, reference_image2, reference_image3],
label=None,
)
if __name__ == "__main__":
ip = requests.get('http://ifconfig.me/ip', timeout=1).text.strip()
print("ip address alibaba", ip)
demo.queue(max_size=10)
demo.launch()