import cv2 from keras.models import model_from_json import numpy as np # from keras_preprocessing.image import load_img json_file = open("facialemotion.json", "r") model_json = json_file.read() json_file.close() model = model_from_json(model_json) model.load_weights("facialemotionmodel.h5") haar_file=cv2.data.haarcascades + 'haarcascade_frontalface_default.xml' face_cascade=cv2.CascadeClassifier(haar_file) def extract_features(image): feature = np.array(image) feature = feature.reshape(1,48,48,1) return feature/255.0 webcam=cv2.VideoCapture(0) labels = {0 : 'angry', 1 : 'disgust', 2 : 'fear', 3 : 'happy', 4 : 'neutral', 5 : 'sad', 6 : 'surprise'} while True: i,im=webcam.read() gray=cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) faces=face_cascade.detectMultiScale(im,1.3,5) try: for (p,q,r,s) in faces: image = gray[q:q+s,p:p+r] cv2.rectangle(im,(p,q),(p+r,q+s),(255,0,0),2) image = cv2.resize(image,(48,48)) img = extract_features(image) pred = model.predict(img) prediction_label = labels[pred.argmax()] # print("Predicted Output:", prediction_label) # cv2.putText(im,prediction_label) cv2.putText(im, '% s' %(prediction_label), (p-10, q-10),cv2.FONT_HERSHEY_COMPLEX_SMALL,2, (0,0,255)) cv2.imshow("Output",im) cv2.waitKey(27) except cv2.error: pass